From f6cf5cb7dddef679ee40d4ce541632bb6b751c10 Mon Sep 17 00:00:00 2001 From: Youssef Kashef Date: Thu, 19 May 2022 14:51:26 +0200 Subject: [PATCH] fix layout of cdf figures in notes --- notes/04_density-transform/2_cdf.tex | 8 ++++---- notes/04_density-transform/3_density-transform.tex | 6 +++--- 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/notes/04_density-transform/2_cdf.tex b/notes/04_density-transform/2_cdf.tex index dc0ccfd..24e097f 100644 --- a/notes/04_density-transform/2_cdf.tex +++ b/notes/04_density-transform/2_cdf.tex @@ -4,10 +4,10 @@ \subsection{The Inverse CDF technique} \only<1,2>{ \begin{center} -\begin{minipage}{0.45\textwidth} +\begin{minipage}{\slidesonly{0.45}\notesonly{0.3}\textwidth} \includegraphics[width=0.99\textwidth]{img/gauss_pdfcdf} \end{minipage} -\begin{minipage}{0.45\textwidth} +\begin{minipage}{\slidesonly{0.45}\notesonly{0.3}\textwidth} \includegraphics[width=0.99\textwidth]{img/laplacian_pdfcdf} \end{minipage} \end{center} @@ -21,10 +21,10 @@ \subsection{The Inverse CDF technique} \only<3>{ \begin{center} -\begin{minipage}{0.45\textwidth} +\begin{minipage}{\slidesonly{0.45}\notesonly{0.3}\textwidth} \includegraphics[width=0.99\textwidth]{img/gauss_cdfmarginals} \end{minipage} -\begin{minipage}{0.45\textwidth} +\begin{minipage}{\slidesonly{0.45}\notesonly{0.3}\textwidth} \includegraphics[width=0.99\textwidth]{img/laplacian_cdfmarginals} \end{minipage} \end{center} diff --git a/notes/04_density-transform/3_density-transform.tex b/notes/04_density-transform/3_density-transform.tex index 8c9b5b2..6b1bbb3 100644 --- a/notes/04_density-transform/3_density-transform.tex +++ b/notes/04_density-transform/3_density-transform.tex @@ -23,7 +23,7 @@ \subsubsection{Setting} \pause -and let $\vec g(\vec x) =\notesonly{ ( g_1(\vec x), g_2(\vec x))^\top =} ( g_1(x_1, x_2), g_2(x_1, x_2))^\top = (u_1, u_2)^\top = \vec u$ be a one-to-one mapping/transformation. +and let $\vec g(\vec x) = ( g_1(x_1, x_2), g_2(x_1, x_2))^\top = (u_1, u_2)^\top = \vec u$ be a one-to-one mapping/transformation. \svspace{-3mm} @@ -80,7 +80,7 @@ \subsubsection{Setting} =\int_{u(\Omega)} f(~\underbrace{\vec g^{-1}(\vec u)}_{= \vec x}~) \frac{1}{\left|\det \frac{\partial \vec{u}}{\partial \vec{x}} \right|} \mathbf{d}\vec{u}, \end{equation} -\notesonly{where $\vec g^{-1}(\vec u) = \vec x$ is the inverse mapping.} +\notesonly{where $\vec g^{-1}(\vec u) = \vec x$ is the inverse mapping which we assume to exist and to be differentiable.} \end{frame} @@ -248,7 +248,7 @@ \subsubsection{Mapping the vectors} - We use the same procedure on ${\color{red}\vec e_2}$: \begin{equation} -u: {\color{red}\vec e_2} \mapsto +\vec g: {\color{red}\vec e_2} \mapsto \rmat{ \frac{\partial u_1}{\partial x_2} \Delta x_2\\[0.2cm] \frac{\partial u_2}{\partial x_2} \Delta x_2