forked from KhronosGroup/Vulkan-ValidationLayers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubresource_adapter.cpp
857 lines (783 loc) · 39.3 KB
/
subresource_adapter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/* Copyright (c) 2019-2023 The Khronos Group Inc.
* Copyright (c) 2019-2023 Valve Corporation
* Copyright (c) 2019-2023 LunarG, Inc.
* Copyright (C) 2019-2023 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <[email protected]>
*
*/
#include <cassert>
#include "subresource_adapter.h"
#include "vk_format_utils.h"
#include <cmath>
#include "state_tracker/image_state.h"
#include "layer_chassis_dispatch.h"
namespace subresource_adapter {
Subresource::Subresource(const RangeEncoder& encoder, const VkImageSubresource& subres)
: VkImageSubresource({0, subres.mipLevel, subres.arrayLayer}), aspect_index() {
aspect_index = encoder.LowerBoundFromMask(subres.aspectMask);
aspectMask = encoder.AspectBit(aspect_index);
}
IndexType RangeEncoder::Encode1AspectArrayOnly(const Subresource& pos) const { return pos.arrayLayer; }
IndexType RangeEncoder::Encode1AspectMipArray(const Subresource& pos) const { return pos.arrayLayer + pos.mipLevel * mip_size_; }
IndexType RangeEncoder::Encode1AspectMipOnly(const Subresource& pos) const { return pos.mipLevel; }
IndexType RangeEncoder::EncodeAspectArrayOnly(const Subresource& pos) const {
return pos.arrayLayer + aspect_base_[pos.aspect_index];
}
IndexType RangeEncoder::EncodeAspectMipArray(const Subresource& pos) const {
return pos.arrayLayer + pos.mipLevel * mip_size_ + aspect_base_[pos.aspect_index];
}
IndexType RangeEncoder::EncodeAspectMipOnly(const Subresource& pos) const { return pos.mipLevel + aspect_base_[pos.aspect_index]; }
uint32_t RangeEncoder::LowerBoundImpl1(VkImageAspectFlags aspect_mask) const {
assert(aspect_mask & aspect_bits_[0]);
return 0;
}
uint32_t RangeEncoder::LowerBoundWithStartImpl1(VkImageAspectFlags aspect_mask, uint32_t start) const {
assert(start == 0);
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
return limits_.aspect_index;
}
uint32_t RangeEncoder::LowerBoundImpl2(VkImageAspectFlags aspect_mask) const {
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
assert(aspect_mask & aspect_bits_[1]);
return 1;
}
uint32_t RangeEncoder::LowerBoundWithStartImpl2(VkImageAspectFlags aspect_mask, uint32_t start) const {
switch (start) {
case 0:
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
[[fallthrough]];
case 1:
if (aspect_mask & aspect_bits_[1]) {
return 1;
}
break;
default:
break;
}
return limits_.aspect_index;
}
uint32_t RangeEncoder::LowerBoundImpl3(VkImageAspectFlags aspect_mask) const {
if (aspect_mask & aspect_bits_[0]) {
return 0;
} else if (aspect_mask & aspect_bits_[1]) {
return 1;
} else {
assert(aspect_mask & aspect_bits_[2]);
return 2;
}
}
uint32_t RangeEncoder::LowerBoundWithStartImpl3(VkImageAspectFlags aspect_mask, uint32_t start) const {
switch (start) {
case 0:
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
[[fallthrough]];
case 1:
if ((aspect_mask & aspect_bits_[1])) {
return 1;
}
[[fallthrough]];
case 2:
if ((aspect_mask & aspect_bits_[2])) {
return 2;
}
break;
default:
break;
}
return limits_.aspect_index;
}
void RangeEncoder::PopulateFunctionPointers() {
// Select the encode/decode specialists
if (limits_.aspect_index == 1) {
// One aspect use simplified encode/decode math
if (limits_.arrayLayer == 1) { // Same as mip_size_ == 1
encode_function_ = &RangeEncoder::Encode1AspectMipOnly;
decode_function_ = &RangeEncoder::DecodeAspectMipOnly<1>;
} else if (limits_.mipLevel == 1) {
encode_function_ = &RangeEncoder::Encode1AspectArrayOnly;
decode_function_ = &RangeEncoder::DecodeAspectArrayOnly<1>;
} else {
encode_function_ = &RangeEncoder::Encode1AspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<1>;
}
lower_bound_function_ = &RangeEncoder::LowerBoundImpl1;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl1;
} else if (limits_.aspect_index == 2) {
// Two aspect use simplified encode/decode math
if (limits_.arrayLayer == 1) { // Same as mip_size_ == 1
encode_function_ = &RangeEncoder::EncodeAspectMipOnly;
decode_function_ = &RangeEncoder::DecodeAspectMipOnly<2>;
} else if (limits_.mipLevel == 1) {
encode_function_ = &RangeEncoder::EncodeAspectArrayOnly;
decode_function_ = &RangeEncoder::DecodeAspectArrayOnly<2>;
} else {
encode_function_ = &RangeEncoder::EncodeAspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<2>;
}
lower_bound_function_ = &RangeEncoder::LowerBoundImpl2;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl2;
} else {
encode_function_ = &RangeEncoder::EncodeAspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<3>;
lower_bound_function_ = &RangeEncoder::LowerBoundImpl3;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl3;
}
// Initialize the offset array
aspect_base_[0] = 0;
for (uint32_t i = 1; i < limits_.aspect_index; ++i) {
aspect_base_[i] = aspect_base_[i - 1] + aspect_size_;
}
}
RangeEncoder::RangeEncoder(const VkImageSubresourceRange& full_range, const AspectParameters* param)
: limits_(param->AspectMask(), full_range.levelCount, full_range.layerCount, param->AspectCount()),
full_range_(full_range),
mip_size_(full_range.layerCount),
aspect_size_(mip_size_ * full_range.levelCount),
aspect_bits_(param->AspectBits()),
mask_index_function_(param->MaskToIndexFunction()),
encode_function_(nullptr),
decode_function_(nullptr) {
// Only valid to create an encoder for a *whole* image (i.e. base must be zero, and the specified limits_.selected_aspects
// *must* be equal to the traits aspect mask. (Encoder range assumes zero bases)
assert(full_range.aspectMask == limits_.aspectMask);
assert(full_range.baseArrayLayer == 0);
assert(full_range.baseMipLevel == 0);
// TODO: should be some static assert
assert(param->AspectCount() <= kMaxSupportedAspect);
PopulateFunctionPointers();
}
#ifndef NDEBUG
static bool IsValid(const RangeEncoder& encoder, const VkImageSubresourceRange& bounds) {
const auto& limits = encoder.Limits();
return (((bounds.aspectMask & limits.aspectMask) == bounds.aspectMask) &&
(bounds.baseMipLevel + bounds.levelCount <= limits.mipLevel) &&
(bounds.baseArrayLayer + bounds.layerCount <= limits.arrayLayer));
}
#endif
// Create an iterator like "generator" that for each increment produces the next index range matching the
// next contiguous (in index space) section of the VkImageSubresourceRange
// Ranges will always span the layerCount layers, and if the layerCount is the full range of the image (as known by
// the encoder) will span the levelCount mip levels as weill.
RangeGenerator::RangeGenerator(const RangeEncoder& encoder, const VkImageSubresourceRange& subres_range)
: encoder_(&encoder), isr_pos_(encoder, subres_range), pos_(), aspect_base_() {
assert((((isr_pos_.Limits()).aspectMask & (encoder.Limits()).aspectMask) == (isr_pos_.Limits()).aspectMask));
assert((isr_pos_.Limits()).baseMipLevel + (isr_pos_.Limits()).levelCount <= (encoder.Limits()).mipLevel);
assert((isr_pos_.Limits()).baseArrayLayer + (isr_pos_.Limits()).layerCount <= (encoder.Limits()).arrayLayer);
// To see if we have a full range special case, need to compare the subres_range against the *encoders* limits
const auto& limits = encoder.Limits();
if ((subres_range.baseArrayLayer == 0 && subres_range.layerCount == limits.arrayLayer)) {
if ((subres_range.baseMipLevel == 0) && (subres_range.levelCount == limits.mipLevel)) {
if (subres_range.aspectMask == limits.aspectMask) {
// Full range
pos_.begin = 0;
pos_.end = encoder.AspectSize() * limits.aspect_index;
aspect_count_ = 1; // Flag this to never advance aspects.
} else {
// All mips all layers but not all aspect
pos_.begin = encoder.AspectBase(isr_pos_.aspect_index);
pos_.end = pos_.begin + encoder.AspectSize();
aspect_count_ = limits.aspect_index;
}
} else {
// All array layers, but not all levels
pos_.begin = encoder.AspectBase(isr_pos_.aspect_index) + subres_range.baseMipLevel * encoder.MipSize();
pos_.end = pos_.begin + subres_range.levelCount * encoder.MipSize();
aspect_count_ = limits.aspect_index;
}
// Full set of array layers at a time, thus we can span across all selected mip levels
mip_count_ = 1; // we don't ever advance across mips, as we do all of then in one range
} else {
// Each range covers all included array_layers for each selected mip_level for each given selected aspect
// so we'll use the general purpose encode and smallest range size
pos_.begin = encoder.Encode(isr_pos_);
pos_.end = pos_.begin + subres_range.layerCount;
// we do have to traverse across mips, though (other than Encode abover), we don't have to know which one we are on.
mip_count_ = subres_range.levelCount;
aspect_count_ = limits.aspect_index;
}
// To get to the next aspect range we offset from the last base
aspect_base_ = pos_;
mip_index_ = 0;
aspect_index_ = isr_pos_.aspect_index;
}
RangeGenerator& RangeGenerator::operator++() {
mip_index_++;
// NOTE: If all selected mip levels are done at once, mip_count_ is set to one, not the number of selected mip_levels
if (mip_index_ >= mip_count_) {
const auto last_aspect_index = aspect_index_;
// Seek the next value aspect (if any)
aspect_index_ = encoder_->LowerBoundFromMask(isr_pos_.Limits().aspectMask, aspect_index_ + 1);
if (aspect_index_ < aspect_count_) {
// Force isr_pos to the beginning of this found aspect
isr_pos_.SeekAspect(aspect_index_);
// SubresourceGenerator should never be at tombstones we we aren't
assert(isr_pos_.aspectMask != 0);
// Offset by the distance between the last start of aspect and *this* start of aspect
aspect_base_ += (encoder_->AspectBase(isr_pos_.aspect_index) - encoder_->AspectBase(last_aspect_index));
pos_ = aspect_base_;
mip_index_ = 0;
} else {
// Tombstone both index range and subresource positions to "At end" convention
pos_ = {0, 0};
isr_pos_.aspectMask = 0;
}
} else {
// Note: for the layerCount < full_range.layerCount case, because the generated ranges per mip_level are discontinuous
// we have to do each individual array of ranges
pos_ += encoder_->MipSize();
isr_pos_.SeekMip(isr_pos_.Limits().baseMipLevel + mip_index_);
}
return *this;
}
ImageRangeEncoder::ImageRangeEncoder(const IMAGE_STATE& image)
: ImageRangeEncoder(image, AspectParameters::Get(image.full_range.aspectMask)) {}
ImageRangeEncoder::ImageRangeEncoder(const IMAGE_STATE& image, const AspectParameters* param)
: RangeEncoder(image.full_range, param), total_size_(0U) {
if (image.createInfo.extent.depth > 1) {
limits_.arrayLayer = image.createInfo.extent.depth;
}
VkSubresourceLayout layout = {};
VkImageSubresource subres = {};
VkImageSubresourceLayers subres_layers = {limits_.aspectMask, 0, 0, limits_.arrayLayer};
linear_image_ = false;
// WORKAROUND for profile and mock_icd not containing valid VkSubresourceLayout yet. Treat it as optimal image.
if (image.createInfo.tiling == VK_IMAGE_TILING_LINEAR) {
subres = {static_cast<VkImageAspectFlags>(AspectBit(0)), 0, 0};
DispatchGetImageSubresourceLayout(image.store_device_as_workaround, image.image(), &subres, &layout);
if (layout.size > 0) {
linear_image_ = true;
}
}
is_compressed_ = FormatIsCompressed(image.createInfo.format);
texel_extent_ = FormatTexelBlockExtent(image.createInfo.format);
is_3_d_ = image.createInfo.imageType == VK_IMAGE_TYPE_3D;
y_interleave_ = false;
for (uint32_t aspect_index = 0; aspect_index < limits_.aspect_index; ++aspect_index) {
subres.aspectMask = static_cast<VkImageAspectFlags>(AspectBit(aspect_index));
subres_layers.aspectMask = subres.aspectMask;
texel_sizes_.push_back(FormatTexelSize(image.createInfo.format, subres.aspectMask));
IndexType aspect_size = 0;
for (uint32_t mip_index = 0; mip_index < limits_.mipLevel; ++mip_index) {
subres_layers.mipLevel = mip_index;
subres.mipLevel = mip_index;
auto subres_extent = image.GetSubresourceExtent(subres_layers);
if (linear_image_) {
DispatchGetImageSubresourceLayout(image.store_device_as_workaround, image.image(), &subres, &layout);
if (is_3_d_) {
if ((layout.depthPitch == 0) && (subres_extent.depth == 1)) {
layout.depthPitch = layout.size; // Certain implmentations don't supply pitches when size is 1
}
y_interleave_ = y_interleave_ || (layout.rowPitch > layout.depthPitch);
} else {
if ((layout.arrayPitch == 0) && (limits_.arrayLayer == 1)) {
layout.arrayPitch = layout.size; // Certain implmentations don't supply pitches when size is 1
}
y_interleave_ = y_interleave_ || (layout.rowPitch > layout.arrayPitch);
}
} else {
layout.offset += layout.size;
layout.rowPitch = static_cast<VkDeviceSize>(floor(subres_extent.width * texel_sizes_[aspect_index]));
layout.arrayPitch = layout.rowPitch * subres_extent.height;
layout.depthPitch = layout.arrayPitch;
if (is_3_d_) {
layout.size = layout.depthPitch * subres_extent.depth;
} else {
// 2D arrays are not affected by MIP level extent reductions.
layout.size = layout.arrayPitch * limits_.arrayLayer;
}
}
subres_info_.emplace_back(layout, subres_extent, texel_extent_, texel_sizes_[aspect_index]);
aspect_size += layout.size;
total_size_ += layout.size;
}
aspect_sizes_.emplace_back(aspect_size);
}
}
IndexType ImageRangeEncoder::Encode2D(const VkSubresourceLayout& layout, uint32_t layer, uint32_t aspect_index,
const VkOffset3D& offset) const {
assert(offset.z == 0U);
return layout.offset + layer * layout.arrayPitch + offset.y * layout.rowPitch +
(offset.x ? static_cast<IndexType>(floor(offset.x * texel_sizes_[aspect_index])) : 0U);
}
IndexType ImageRangeEncoder::Encode3D(const VkSubresourceLayout& layout, uint32_t aspect_index, const VkOffset3D& offset) const {
return layout.offset + offset.z * layout.depthPitch + offset.y * layout.rowPitch +
(offset.x ? static_cast<IndexType>(floor(offset.x * texel_sizes_[aspect_index])) : 0U);
}
void ImageRangeEncoder::Decode(const VkImageSubresource& subres, const IndexType& encode, uint32_t& out_layer,
VkOffset3D& out_offset) const {
uint32_t subres_index = GetSubresourceIndex(LowerBoundFromMask(subres.aspectMask), subres.mipLevel);
const auto& subres_layout = GetSubresourceInfo(subres_index).layout;
IndexType decode = encode - subres_layout.offset;
out_layer = static_cast<uint32_t>(decode / subres_layout.arrayPitch);
decode -= (out_layer * subres_layout.arrayPitch);
out_offset.z = static_cast<int32_t>(decode / subres_layout.depthPitch);
decode -= (out_offset.z * subres_layout.depthPitch);
out_offset.y = static_cast<int32_t>(decode / subres_layout.rowPitch);
decode -= (out_offset.y * subres_layout.rowPitch);
out_offset.x = static_cast<int32_t>(static_cast<double>(decode) / texel_sizes_[LowerBoundFromMask(subres.aspectMask)]);
}
inline VkImageSubresourceRange GetRemaining(const VkImageSubresourceRange& full_range, VkImageSubresourceRange subres_range) {
if (subres_range.levelCount == VK_REMAINING_MIP_LEVELS) {
subres_range.levelCount = full_range.levelCount - subres_range.baseMipLevel;
}
if (subres_range.layerCount == VK_REMAINING_ARRAY_LAYERS) {
subres_range.layerCount = full_range.layerCount - subres_range.baseArrayLayer;
}
return subres_range;
}
inline bool CoversAllLayers(const VkImageSubresourceRange& full_range, VkImageSubresourceRange subres_range) {
return (subres_range.baseArrayLayer == 0) && (subres_range.layerCount == full_range.layerCount);
}
inline bool CoversAllLevels(const VkImageSubresourceRange& full_range, VkImageSubresourceRange subres_range) {
return (subres_range.baseMipLevel == 0) && (subres_range.layerCount == full_range.levelCount);
}
inline bool CoversAllAspects(const VkImageSubresourceRange& full_range, VkImageSubresourceRange subres_range) {
return full_range.aspectMask == subres_range.aspectMask;
}
static bool SubresourceRangeIsEmpty(const VkImageSubresourceRange& range) {
return (0 == range.aspectMask) || (0 == range.levelCount) || (0 == range.layerCount);
}
static bool ExtentIsEmpty(const VkExtent3D& extent) { return (0 == extent.width) || (0 == extent.height) || (0 == extent.width); }
void ImageRangeGenerator::SetInitialPosFullOffset(uint32_t layer, uint32_t aspect_index) {
const bool is_3D = encoder_->Is3D();
const auto& subres_layout = subres_info_->layout;
const IndexType encode_base = is_3D ? encoder_->Encode3D(subres_layout, aspect_index, offset_)
: encoder_->Encode2D(subres_layout, layer, aspect_index, offset_);
const IndexType base = base_address_ + encode_base;
// To deal with compressed formats the span must cover the y-extent of lines (something we resmember in the y_step)
const IndexType span = static_cast<IndexType>(floor(encoder_->TexelSize(aspect_index) * (extent_.width * incr_state_.y_step)));
const uint32_t z_count = is_3D ? extent_.depth : subres_range_.layerCount;
const IndexType z_pitch = is_3D ? subres_info_->z_step_pitch : subres_layout.arrayPitch;
incr_state_.Set(extent_.height, z_count, base, span, subres_info_->y_step_pitch, z_pitch);
}
void ImageRangeGenerator::SetInitialPosFullWidth(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->IsInterleaveY() && (offset_.x == 0));
const bool is_3D = encoder_->Is3D();
const auto& subres_layout = subres_info_->layout;
const IndexType encode_base = is_3D ? encoder_->Encode3D(subres_layout, aspect_index, offset_)
: encoder_->Encode2D(subres_layout, layer, aspect_index, offset_);
const IndexType base = base_address_ + encode_base;
// Height must be in multiples of y_step (the texel dimension)... validated elsewhere
const IndexType span = subres_layout.rowPitch * extent_.height;
const uint32_t z_count = is_3D ? extent_.depth : subres_range_.layerCount;
const IndexType z_pitch = is_3D ? subres_info_->z_step_pitch : subres_layout.arrayPitch;
incr_state_.Set(1U, z_count, base, span, subres_info_->y_step_pitch, z_pitch);
}
void ImageRangeGenerator::SetInitialPosFullHeight(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset + subres_range_.baseArrayLayer * subres_layout.arrayPitch;
const IndexType span = subres_info_->layer_span;
const IndexType z_step = subres_layout.arrayPitch;
incr_state_.Set(1, subres_range_.layerCount, base, span, span, z_step);
}
void ImageRangeGenerator::SetInitialPosSomeDepth(uint32_t layer, uint32_t aspect_index) {
assert(encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0) && (layer == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType encode_base = encoder_->Encode3D(subres_layout, aspect_index, offset_);
const IndexType base = base_address_ + encode_base;
// Height must be in multiples of z_step (the texel dimension)... validated elsewhere
const IndexType span = subres_layout.depthPitch * extent_.depth;
incr_state_.Set(1, 1, base, span, span, subres_layout.size);
}
void ImageRangeGenerator::SetInitialPosFullDepth(uint32_t layer, uint32_t aspect_index) {
assert(encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0) && (offset_.z == 0) && (layer == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset;
const IndexType span = subres_layout.depthPitch * extent_.depth;
incr_state_.Set(1, 1, base, span, span, span);
}
void ImageRangeGenerator::SetInitialPosSomeLayers(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0) && (offset_.z == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset + layer * subres_layout.arrayPitch;
const IndexType span = subres_layout.arrayPitch * subres_range_.layerCount;
const IndexType z_step = subres_layout.arrayPitch * encoder_->Limits().arrayLayer;
incr_state_.Set(1, 1, base, span, span, z_step);
}
void ImageRangeGenerator::SetInitialPosAllLayers(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->Is3D() && (offset_.x == 0) && (offset_.y == 0) && (offset_.z == 0) &&
(layer == 0));
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset;
const IndexType span = subres_layout.arrayPitch * subres_range_.layerCount;
incr_state_.Set(1, 1, base, span, span, span);
}
void ImageRangeGenerator::SetInitialPosOneAspect(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->IsLinearImage()); // Requires the major minor of "idealized/non-linear" images
const auto& subres_layout = subres_info_->layout;
const IndexType base = base_address_ + subres_layout.offset;
IndexType span = 0;
if (subres_range_.levelCount == encoder_->Limits().mipLevel) {
span = encoder_->GetAspectSize(aspect_index);
} else {
// Add up the mip sizes...
// Assumes subres_info is pointing to index(baseMipLevel, aspect_index)
// Assumes mip major order...
for (uint32_t level = 0; level < subres_range_.levelCount; level++) {
span += subres_info_[level].layout.size;
}
}
incr_mip_ = subres_range_.levelCount;
incr_state_.Set(1, 1, base, span, span, span);
}
void ImageRangeGenerator::SetInitialPosAllSubres(uint32_t layer, uint32_t aspect_index) {
assert(!encoder_->IsLinearImage());
const IndexType base = base_address_;
const IndexType span = encoder_->TotalSize();
// Just one range... everything, ++ will short circuit to "end"
single_full_size_range_ = true;
// We don't need to set up the rest of the incrementer, just the starting position
incr_state_.y_base = {base, base + span};
}
bool ImageRangeGenerator::Convert2DCompatibleTo3D() {
if (encoder_->Is3D() && is_depth_sliced_) {
// This only valid for 2D compatible 3D images
// Touch up the extent and the subres to make this look like a depth extent
offset_.z = subres_range_.baseArrayLayer;
subres_range_.baseArrayLayer = 0;
extent_.depth = subres_range_.layerCount;
subres_range_.layerCount = 1;
return true;
}
return false;
}
ImageRangeGenerator::ImageRangeGenerator(const ImageRangeEncoder& encoder, const VkImageSubresourceRange& subres_range,
VkDeviceSize base_address, bool is_depth_sliced)
: encoder_(&encoder),
subres_range_(GetRemaining(encoder.FullRange(), subres_range)),
offset_(),
extent_(),
base_address_(base_address),
is_depth_sliced_(is_depth_sliced) {
#ifndef NDEBUG
assert(IsValid(*encoder_, subres_range_));
#endif
if (SubresourceRangeIsEmpty(subres_range)) {
// Not robust to empty ranges, so for to "at end" condition.
pos_ = {0, 0};
return;
}
SetUpSubresInfo();
extent_ = subres_info_->extent;
const bool converted = Convert2DCompatibleTo3D();
SetUpIncrementerDefaults();
if (converted && (extent_.depth != subres_info_->extent.depth)) {
SetUpIncrementer(true, true, false);
} else {
SetUpSubresIncrementer();
}
SetInitialPos(subres_range_.baseArrayLayer, aspect_index_);
pos_ = incr_state_.y_base;
}
ImageRangeGenerator::ImageRangeGenerator(const ImageRangeEncoder& encoder, const VkImageSubresourceRange& subres_range,
const VkOffset3D& offset, const VkExtent3D& extent, VkDeviceSize base_address,
bool is_depth_sliced)
: encoder_(&encoder),
subres_range_(GetRemaining(encoder.FullRange(), subres_range)),
offset_(offset),
extent_(extent),
base_address_(base_address),
is_depth_sliced_(is_depth_sliced) {
#ifndef NDEBUG
assert(IsValid(*encoder_, subres_range_));
#endif
assert(subres_range_.levelCount == 1);
if (SubresourceRangeIsEmpty(subres_range)) {
// Empty range forces empty position -- no operations other than deref for empty check are valid
pos_ = {0, 0};
return;
}
// When passing in an offset and extent, *must* only specify *one* mip level
SetUpSubresInfo();
Convert2DCompatibleTo3D();
const VkExtent3D& subres_extent = subres_info_->extent;
if (ExtentIsEmpty(extent_) || ((extent_.width + offset_.x) > subres_extent.width) ||
((extent_.height + offset_.y) > subres_extent.height) || ((extent_.depth + offset_.z) > subres_extent.depth)) {
// Empty range forces empty position -- no operations other than deref for empty check are valid
pos_ = {0, 0};
return;
}
const bool all_width = (offset.x == 0) && (extent_.width == subres_extent.width);
const bool all_height = (offset.y == 0) && (extent_.height == subres_extent.height);
const bool all_depth = !encoder_->Is3D() || ((offset.z == 0) && (extent_.depth == subres_extent.depth));
SetUpIncrementerDefaults();
SetUpIncrementer(all_width, all_height, all_depth);
SetInitialPos(subres_range_.baseArrayLayer, aspect_index_);
pos_ = incr_state_.y_base;
}
void ImageRangeGenerator::SetUpSubresInfo() {
mip_index_ = 0;
aspect_index_ = encoder_->LowerBoundFromMask(subres_range_.aspectMask);
subres_index_ = encoder_->GetSubresourceIndex(aspect_index_, subres_range_.baseMipLevel);
subres_info_ = &encoder_->GetSubresourceInfo(subres_index_);
}
void ImageRangeGenerator::SetUpIncrementerDefaults() {
// These are safe defaults that most SetInitialPos* will use. Those that need to change them, do.
incr_state_.y_step = encoder_->TexelExtent().height;
incr_state_.layer_z_step = encoder_->Is3D() ? encoder_->TexelExtent().depth : 1U;
incr_mip_ = 1;
single_full_size_range_ = false;
}
// Assumes full extent in width/height/depth(if present)
void ImageRangeGenerator::SetUpSubresIncrementer() {
const auto& full_range = encoder_->FullRange();
const bool linear_image = encoder_->IsLinearImage();
const bool is_3d = encoder_->Is3D();
const bool layers_interleave = linear_image && (subres_info_->layout.arrayPitch > subres_info_->layout.size);
if (layers_interleave) {
// The implementation can interleave arrays, aspects, and mips arbitrarily
if (encoder_->Is3D()) {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullDepth;
} else {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullHeight;
}
} else if (is_3d || CoversAllLayers(full_range, subres_range_)) {
if (!linear_image) {
// Linear images are defined by the implementation and so we can't assume the ordering we use here
const bool all_mips = (subres_range_.baseMipLevel == 0) && (subres_range_.levelCount == full_range.levelCount);
const bool all_aspects = subres_range_.aspectMask == full_range.aspectMask;
if (all_aspects && all_mips) {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosAllSubres;
} else {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosOneAspect;
}
} else if (is_3d) {
// 3D implies CoversAllLayers
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullDepth;
} else {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosAllLayers;
}
} else {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosSomeLayers;
}
}
void ImageRangeGenerator::SetUpIncrementer(bool all_width, bool all_height, bool all_depth) {
if (!all_width || encoder_->IsInterleaveY()) {
// Dimensional majority is not guaranteed for Linear images except in X
// For tiled images we can use "idealized" addresses
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullOffset;
} else if (!all_height) {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosFullWidth;
} else if (encoder_->Is3D() && !all_depth) {
set_initial_pos_fn_ = &ImageRangeGenerator::SetInitialPosSomeDepth;
} else {
SetUpSubresIncrementer();
}
}
ImageRangeGenerator& ImageRangeGenerator::operator++() {
// Short circuit
if (single_full_size_range_) {
// Advance directly to end
pos_ = {0, 0};
return *this;
}
incr_state_.y_index += incr_state_.y_step;
if (incr_state_.y_index < incr_state_.y_count) {
incr_state_.y_base += incr_state_.incr_y;
pos_ = incr_state_.y_base;
} else {
incr_state_.layer_z_index += incr_state_.layer_z_step;
if (incr_state_.layer_z_index < incr_state_.layer_z_count) {
incr_state_.layer_z_base += incr_state_.incr_layer_z;
incr_state_.y_base = incr_state_.layer_z_base;
pos_ = incr_state_.y_base;
} else {
// For aspects and mips we need to move to a new subresource layer info
mip_index_ += incr_mip_;
if (mip_index_ < subres_range_.levelCount) {
// NOTE: This means that ImageRangeGenerator is relying on the major/minor ordering of mip and aspect in the
subres_index_ += incr_mip_;
extent_ = subres_info_->extent; // Overwrites input extent, but > 1 MIP isn't valid with input extent
} else {
const auto next_aspect_index = encoder_->LowerBoundFromMask(subres_range_.aspectMask, aspect_index_ + 1);
if (next_aspect_index < encoder_->Limits().aspect_index) {
// SubresourceLayout info in ImageRangeEncoder... it's a cheat, but it was a hotspot.
aspect_index_ = next_aspect_index;
mip_index_ = 0;
subres_index_ = encoder_->GetSubresourceIndex(aspect_index_, subres_range_.baseMipLevel);
} else {
// At End
pos_ = {0, 0};
return *this;
}
}
subres_info_ = &encoder_->GetSubresourceInfo(subres_index_);
SetInitialPos(subres_range_.baseArrayLayer, aspect_index_);
pos_ = incr_state_.y_base;
}
}
return *this;
}
template <typename AspectTraits>
class AspectParametersImpl : public AspectParameters {
public:
VkImageAspectFlags AspectMask() const override { return AspectTraits::kAspectMask; }
MaskIndexFunc MaskToIndexFunction() const override { return &AspectTraits::MaskIndex; }
uint32_t AspectCount() const override { return AspectTraits::kAspectCount; };
const VkImageAspectFlagBits* AspectBits() const override { return AspectTraits::AspectBits().data(); }
};
struct NullAspectTraits {
static constexpr uint32_t kAspectCount = 0;
static constexpr VkImageAspectFlags kAspectMask = 0;
static uint32_t MaskIndex(VkImageAspectFlags mask) { return 0; };
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{};
return k_aspect_bits;
}
};
struct ColorAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
static uint32_t MaskIndex(VkImageAspectFlags mask) { return 0; };
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{{VK_IMAGE_ASPECT_COLOR_BIT}};
return k_aspect_bits;
}
};
struct DepthAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
static uint32_t MaskIndex(VkImageAspectFlags mask) { return 0; };
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{{VK_IMAGE_ASPECT_DEPTH_BIT}};
return k_aspect_bits;
}
};
struct StencilAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
static uint32_t MaskIndex(VkImageAspectFlags mask) { return 0; };
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{{VK_IMAGE_ASPECT_STENCIL_BIT}};
return k_aspect_bits;
}
};
struct DepthStencilAspectTraits {
// VK_IMAGE_ASPECT_DEPTH_BIT = 0x00000002, >> 1 -> 1 -1 -> 0
// VK_IMAGE_ASPECT_STENCIL_BIT = 0x00000004, >> 1 -> 2 -1 = 1
static constexpr uint32_t kAspectCount = 2;
static constexpr VkImageAspectFlags kAspectMask = (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
static uint32_t MaskIndex(VkImageAspectFlags mask) {
uint32_t index = (mask >> 1) - 1;
assert((index == 0) || (index == 1));
return index;
};
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{
{VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_ASPECT_STENCIL_BIT}};
return k_aspect_bits;
}
};
struct Multiplane2AspectTraits {
// VK_IMAGE_ASPECT_PLANE_0_BIT = 0x00000010, >> 4 - 1 -> 0
// VK_IMAGE_ASPECT_PLANE_1_BIT = 0x00000020, >> 4 - 1 -> 1
static constexpr uint32_t kAspectCount = 2;
static constexpr VkImageAspectFlags kAspectMask = (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT);
static uint32_t MaskIndex(VkImageAspectFlags mask) {
uint32_t index = (mask >> 4) - 1;
assert((index == 0) || (index == 1));
return index;
};
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{
{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT}};
return k_aspect_bits;
}
};
struct Multiplane3AspectTraits {
// VK_IMAGE_ASPECT_PLANE_0_BIT = 0x00000010, >> 4 - 1 -> 0
// VK_IMAGE_ASPECT_PLANE_1_BIT = 0x00000020, >> 4 - 1 -> 1
// VK_IMAGE_ASPECT_PLANE_2_BIT = 0x00000040, >> 4 - 1 -> 3
static constexpr uint32_t kAspectCount = 3;
static constexpr VkImageAspectFlags kAspectMask =
(VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT);
static uint32_t MaskIndex(VkImageAspectFlags mask) {
uint32_t index = (mask >> 4) - 1;
index = index > 2 ? 2 : index;
assert((index == 0) || (index == 1) || (index == 2));
return index;
};
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> k_aspect_bits{
{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, VK_IMAGE_ASPECT_PLANE_2_BIT}};
return k_aspect_bits;
}
};
// Create the encoder parameter suitable to the full range aspect mask (*must* be canonical)
const AspectParameters* AspectParameters::Get(VkImageAspectFlags aspect_mask) {
// We need a persitent instance of each specialist containing only a VTABLE each
static const AspectParametersImpl<ColorAspectTraits> k_color_param;
static const AspectParametersImpl<DepthAspectTraits> k_depth_param;
static const AspectParametersImpl<StencilAspectTraits> k_stencil_param;
static const AspectParametersImpl<DepthStencilAspectTraits> k_depth_stencil_param;
static const AspectParametersImpl<Multiplane2AspectTraits> k_mutliplane2_param;
static const AspectParametersImpl<Multiplane3AspectTraits> k_mutliplane3_param;
static const AspectParametersImpl<NullAspectTraits> k_null_aspect;
const AspectParameters* param;
switch (aspect_mask) {
case ColorAspectTraits::kAspectMask:
param = &k_color_param;
break;
case DepthAspectTraits::kAspectMask:
param = &k_depth_param;
break;
case StencilAspectTraits::kAspectMask:
param = &k_stencil_param;
break;
case DepthStencilAspectTraits::kAspectMask:
param = &k_depth_stencil_param;
break;
case Multiplane2AspectTraits::kAspectMask:
param = &k_mutliplane2_param;
break;
case Multiplane3AspectTraits::kAspectMask:
param = &k_mutliplane3_param;
break;
default:
assert(false);
param = &k_null_aspect;
}
return param;
}
inline ImageRangeEncoder::SubresInfo::SubresInfo(const VkSubresourceLayout& layout_, const VkExtent3D& extent_,
const VkExtent3D& texel_extent, double texel_size)
: layout(layout_),
extent(extent_),
y_step_pitch(layout.rowPitch * texel_extent.height),
z_step_pitch(layout.depthPitch * texel_extent.depth),
layer_span(layout.rowPitch * extent_.height) {}
void ImageRangeGenerator::IncrementerState::Set(uint32_t y_count_, uint32_t layer_z_count_, IndexType base, IndexType span,
IndexType y_step, IndexType z_step) {
y_count = y_count_;
layer_z_count = layer_z_count_;
y_index = 0;
layer_z_index = 0;
y_base.begin = base;
y_base.end = base + span;
layer_z_base = y_base;
incr_y = y_step;
incr_layer_z = z_step;
}
}; // namespace subresource_adapter