-
Notifications
You must be signed in to change notification settings - Fork 0
/
rnn_layers.py
541 lines (447 loc) · 20.5 KB
/
rnn_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
import numpy as np
"""
This file defines layer types that are commonly used for recurrent neural
networks.
"""
def rnn_step_forward(x, prev_h, Wx, Wh, b):
"""
Run the forward pass for a single timestep of a vanilla RNN that uses a tanh
activation function.
The input data has dimension D, the hidden state has dimension H, and we use
a minibatch size of N.
Inputs:
- x: Input data for this timestep, of shape (N, D).
- prev_h: Hidden state from previous timestep, of shape (N, H)
- Wx: Weight matrix for input-to-hidden connections, of shape (D, H)
- Wh: Weight matrix for hidden-to-hidden connections, of shape (H, H)
- b: Biases of shape (H,)
Returns a tuple of:
- next_h: Next hidden state, of shape (N, H)
- cache: Tuple of values needed for the backward pass.
"""
next_h, cache = None, None
##############################################################################
# TODO: Implement a single forward step for the vanilla RNN. Store the next #
# hidden state and any values you need for the backward pass in the next_h #
# and cache variables respectively. #
##############################################################################
# Step1: First get what inside the tanh
frwd = np.dot(x, Wx) + np.dot(prev_h, Wh) + b
next_h = np.tanh(frwd)
cache = x, Wx, prev_h, Wh, frwd
##############################################################################
# END OF YOUR CODE #
##############################################################################
return next_h, cache
def rnn_step_backward(dnext_h, cache):
"""
Backward pass for a single timestep of a vanilla RNN.
Inputs:
- dnext_h: Gradient of loss with respect to next hidden state
- cache: Cache object from the forward pass
Returns a tuple of:
- dx: Gradients of input data, of shape (N, D)
- dprev_h: Gradients of previous hidden state, of shape (N, H)
- dWx: Gradients of input-to-hidden weights, of shape (D, H)
- dWh: Gradients of hidden-to-hidden weights, of shape (H, H)
- db: Gradients of bias vector, of shape (H,)
"""
dx, dprev_h, dWx, dWh, db = None, None, None, None, None
##############################################################################
# TODO: Implement the backward pass for a single step of a vanilla RNN. #
# #
# HINT: For the tanh function, you can compute the local derivative in terms #
# of the output value from tanh. #
##############################################################################
x, Wx, prev_h, Wh, frwd = cache
dfrwd = (1 - np.tanh(frwd)**2) * dnext_h
dx = np.dot(dfrwd, Wx.T)
dWx = np.dot(x.T, dfrwd)
dprev_h = np.dot(dfrwd, Wh.T)
dWh = np.dot(prev_h.T, dfrwd)
db = np.sum(dfrwd, axis=0)
##############################################################################
# END OF YOUR CODE #
##############################################################################
return dx, dprev_h, dWx, dWh, db
def rnn_forward(x, h0, Wx, Wh, b):
"""
Run a vanilla RNN forward on an entire sequence of data. We assume an input
sequence composed of T vectors, each of dimension D. The RNN uses a hidden
size of H, and we work over a minibatch containing N sequences. After running
the RNN forward, we return the hidden states for all timesteps.
Inputs:
- x: Input data for the entire timeseries, of shape (N, T, D).
- h0: Initial hidden state, of shape (N, H)
- Wx: Weight matrix for input-to-hidden connections, of shape (D, H)
- Wh: Weight matrix for hidden-to-hidden connections, of shape (H, H)
- b: Biases of shape (H,)
Returns a tuple of:
- h: Hidden states for the entire timeseries, of shape (N, T, H).
- cache: Values needed in the backward pass
"""
h, cache = None, None
##############################################################################
# TODO: Implement forward pass for a vanilla RNN running on a sequence of #
# input data. You should use the rnn_step_forward function that you defined #
# above. You can use a for loop to help compute the forward pass. #
##############################################################################
N,T,D = x.shape
H = b.shape[0]
h = np.zeros((N, T, H))
cache = []
h_t = h0
for t in range(T):
h_t, c = rnn_step_forward(x[:, t, :], h_t, Wx, Wh, b)
h[:, t, :] = h_t
cache.append(c)
##############################################################################
# END OF YOUR CODE #
##############################################################################
return h, cache
def rnn_backward(dh, cache):
"""
Compute the backward pass for a vanilla RNN over an entire sequence of data.
Inputs:
- dh: Upstream gradients of all hidden states, of shape (N, T, H)
Returns a tuple of:
- dx: Gradient of inputs, of shape (N, T, D)
- dh0: Gradient of initial hidden state, of shape (N, H)
- dWx: Gradient of input-to-hidden weights, of shape (D, H)
- dWh: Gradient of hidden-to-hidden weights, of shape (H, H)
- db: Gradient of biases, of shape (H,)
"""
dx, dh0, dWx, dWh, db = None, None, None, None, None
##############################################################################
# TODO: Implement the backward pass for a vanilla RNN running an entire #
# sequence of data. You should use the rnn_step_backward function that you #
# defined above. You can use a for loop to help compute the backward pass. #
##############################################################################
N, T, H = dh.shape
D = cache[0][0].shape[1]
# Initialize
dx = np.zeros((T, N, D))
dh0 = np.zeros((N, H))
db = np.zeros((H))
dWh = np.zeros((H, H))
dWx = np.zeros((D, H))
dh = dh.transpose(1, 0, 2)
dh_prev = np.zeros((N, H))
for t in reversed(range(T)):
dh_current = dh[t] + dh_prev
dx_t, dh_prev, dWx_t, dWh_t, db_t = rnn_step_backward(dh_current, cache[t])
dx[t] += dx_t
dh0 = dh_prev
dWx += dWx_t
dWh += dWh_t
db += db_t
dx = dx.transpose(1, 0, 2)
##############################################################################
# END OF YOUR CODE #
##############################################################################
return dx, dh0, dWx, dWh, db
def word_embedding_forward(x, W):
"""
Forward pass for word embeddings. We operate on minibatches of size N where
each sequence has length T. We assume a vocabulary of V words, assigning each
to a vector of dimension D.
Inputs:
- x: Integer array of shape (N, T) giving indices of words. Each element idx
of x muxt be in the range 0 <= idx < V.
- W: Weight matrix of shape (V, D) giving word vectors for all words.
Returns a tuple of:
- out: Array of shape (N, T, D) giving word vectors for all input words.
- cache: Values needed for the backward pass
"""
out, cache = None, None
##############################################################################
# TODO: Implement the forward pass for word embeddings. #
# #
# HINT: This can be done in one line using NumPy's array indexing. #
##############################################################################
out = W[x, :]
cache = x, W
##############################################################################
# END OF YOUR CODE #
##############################################################################
return out, cache
def word_embedding_backward(dout, cache):
"""
Backward pass for word embeddings. We cannot back-propagate into the words
since they are integers, so we only return gradient for the word embedding
matrix.
HINT: Look up the function np.add.at
Inputs:
- dout: Upstream gradients of shape (N, T, D)
- cache: Values from the forward pass
Returns:
- dW: Gradient of word embedding matrix, of shape (V, D).
"""
dW = None
##############################################################################
# TODO: Implement the backward pass for word embeddings. #
# #
# Note that Words can appear more than once in a sequence. #
# HINT: Look up the function np.add.at #
##############################################################################
x, W = cache
dW = np.zeros_like(W)
np.add.at(dW, x, dout)
##############################################################################
# END OF YOUR CODE #
##############################################################################
return dW
def sigmoid(x):
"""
A numerically stable version of the logistic sigmoid function.
"""
pos_mask = (x >= 0)
neg_mask = (x < 0)
z = np.zeros_like(x)
z[pos_mask] = np.exp(-x[pos_mask])
z[neg_mask] = np.exp(x[neg_mask])
top = np.ones_like(x)
top[neg_mask] = z[neg_mask]
return top / (1 + z)
def lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b):
"""
Forward pass for a single timestep of an LSTM.
The input data has dimension D, the hidden state has dimension H, and we use
a minibatch size of N.
Inputs:
- x: Input data, of shape (N, D)
- prev_h: Previous hidden state, of shape (N, H)
- prev_c: previous cell state, of shape (N, H)
- Wx: Input-to-hidden weights, of shape (D, 4H)
- Wh: Hidden-to-hidden weights, of shape (H, 4H)
- b: Biases, of shape (4H,)
Returns a tuple of:
- next_h: Next hidden state, of shape (N, H)
- next_c: Next cell state, of shape (N, H)
- cache: Tuple of values needed for backward pass.
"""
next_h, next_c, cache = None, None, None
#############################################################################
# TODO: Implement the forward pass for a single timestep of an LSTM. #
# You may want to use the numerically stable sigmoid implementation above. #
#############################################################################
#size is needed to split
H = prev_h.shape[1]
a = np.dot(x, Wx) + np.dot(prev_h, Wh) + b
#split and compute gates
a_i = a[:, :H]
i = sigmoid(a_i)
a_f = a[:, H:2 * H]
f = sigmoid(a_f)
a_o = a[:, 2 * H:3 * H]
o = sigmoid(a_o)
a_g = a[:, 3 * H:4 * H]
g = np.tanh(a_g)
next_c = f * prev_c + i * g
next_h = o * np.tanh(next_c)
cache = i, f, o, g, a, a_i, a_f, a_o, a_g, Wx, Wh, b, prev_h, prev_c, x, next_c, next_h
##############################################################################
# END OF YOUR CODE #
##############################################################################
return next_h, next_c, cache
def lstm_step_backward(dnext_h, dnext_c, cache):
"""
Backward pass for a single timestep of an LSTM.
Inputs:
- dnext_h: Gradients of next hidden state, of shape (N, H)
- dnext_c: Gradients of next cell state, of shape (N, H)
- cache: Values from the forward pass
Returns a tuple of:
- dx: Gradient of input data, of shape (N, D)
- dprev_h: Gradient of previous hidden state, of shape (N, H)
- dprev_c: Gradient of previous cell state, of shape (N, H)
- dWx: Gradient of input-to-hidden weights, of shape (D, 4H)
- dWh: Gradient of hidden-to-hidden weights, of shape (H, 4H)
- db: Gradient of biases, of shape (4H,)
"""
dx, dh, dc, dWx, dWh, db = None, None, None, None, None, None
#############################################################################
# TODO: Implement the backward pass for a single timestep of an LSTM. #
# #
# HINT: For sigmoid and tanh you can compute local derivatives in terms of #
# the output value from the nonlinearity. #
#############################################################################
i, f, o, g, a, a_i, a_f, a_o, a_g, Wx, Wh, b, prev_h, prev_c, x, next_c, next_h = cache
d_o = np.tanh(next_c) * dnext_h
dnext_c = dnext_c + (o * (1 - np.tanh(next_c)**2) * dnext_h)
d_f = prev_c * dnext_c
dprev_c = f * dnext_c
d_i = g * dnext_c
d_g = i * dnext_c
da_g = (1 - np.tanh(a_g)**2) * d_g
da_o = sigmoid(a_o) * (1 - sigmoid(a_o)) * d_o
da_f = sigmoid(a_f) * (1 - sigmoid(a_f)) * d_f
da_i = sigmoid(a_i) * (1 - sigmoid(a_i)) * d_i
d_a = np.hstack((da_i, da_f, da_o, da_g))
dx = np.dot(d_a, Wx.T)
dWx = np.dot(x.T, d_a)
dprev_h = np.dot(d_a, Wh.T)
dWh = np.dot(prev_h.T, d_a)
db = np.sum(d_a, axis=0)
##############################################################################
# END OF YOUR CODE #
##############################################################################
return dx, dprev_h, dprev_c, dWx, dWh, db
def lstm_forward(x, h0, Wx, Wh, b):
"""
Forward pass for an LSTM over an entire sequence of data. We assume an input
sequence composed of T vectors, each of dimension D. The LSTM uses a hidden
size of H, and we work over a minibatch containing N sequences. After running
the LSTM forward, we return the hidden states for all timesteps.
Note that the initial cell state is passed as input, but the initial cell
state is set to zero. Also note that the cell state is not returned; it is
an internal variable to the LSTM and is not accessed from outside.
Inputs:
- x: Input data of shape (N, T, D)
- h0: Initial hidden state of shape (N, H)
- Wx: Weights for input-to-hidden connections, of shape (D, 4H)
- Wh: Weights for hidden-to-hidden connections, of shape (H, 4H)
- b: Biases of shape (4H,)
Returns a tuple of:
- h: Hidden states for all timesteps of all sequences, of shape (N, T, H)
- cache: Values needed for the backward pass.
"""
h, cache = None, None
#############################################################################
# TODO: Implement the forward pass for an LSTM over an entire timeseries. #
# You should use the lstm_step_forward function that you just defined. #
#############################################################################
N, T, D = x.shape
N, H = h0.shape
prev_h = h0
prev_c = np.zeros_like(prev_h)
h = np.zeros((T, N, H))
x = x.transpose(1, 0, 2)
cache = []
for t in range(T):
if t > 0:
prev_h = h[t - 1]
prev_c = next_c
h[t], next_c, cache_next = lstm_step_forward(x[t], prev_h, prev_c, Wx, Wh, b)
cache.append(cache_next)
h = h.transpose(1, 0, 2)
##############################################################################
# END OF YOUR CODE #
##############################################################################
return h, cache
def lstm_backward(dh, cache):
"""
Backward pass for an LSTM over an entire sequence of data.]
Inputs:
- dh: Upstream gradients of hidden states, of shape (N, T, H)
- cache: Values from the forward pass
Returns a tuple of:
- dx: Gradient of input data of shape (N, T, D)
- dh0: Gradient of initial hidden state of shape (N, H)
- dWx: Gradient of input-to-hidden weight matrix of shape (D, 4H)
- dWh: Gradient of hidden-to-hidden weight matrix of shape (H, 4H)
- db: Gradient of biases, of shape (4H,)
"""
dx, dh0, dWx, dWh, db = None, None, None, None, None
#############################################################################
# TODO: Implement the backward pass for an LSTM over an entire timeseries. #
# You should use the lstm_step_backward function that you just defined. #
#############################################################################
N, T, H = dh.shape
D = x.shape[-1]
dx = np.zeros((T, N, D))
dh0 = np.zeros((N, H))
db = np.zeros((4 * H,))
dWh = np.zeros((H, 4 * H))
dWx = np.zeros((D, 4 * H))
dh = dh.transpose(1, 0, 2)
dh_prev = np.zeros((N, H))
dc_prev = np.zeros_like(dh_prev)
for t in reversed(range(T)):
dh_current = dh[t] + dh_prev
dc_current = dc_prev
dx_t, dh_prev, dc_prev, dWx_t, dWh_t, db_t = lstm_step_backward(dh_current, dc_current, cache[t])
dx[t] += dx_t
dh0 = dh_prev
dWx += dWx_t
db += db_t
dWh += dWh_t
dx = dx.transpose(1, 0, 2)
##############################################################################
# END OF YOUR CODE #
##############################################################################
return dx, dh0, dWx, dWh, db
def temporal_affine_forward(x, w, b):
"""
Forward pass for a temporal affine layer. The input is a set of D-dimensional
vectors arranged into a minibatch of N timeseries, each of length T. We use
an affine function to transform each of those vectors into a new vector of
dimension M.
Inputs:
- x: Input data of shape (N, T, D)
- w: Weights of shape (D, M)
- b: Biases of shape (M,)
Returns a tuple of:
- out: Output data of shape (N, T, M)
- cache: Values needed for the backward pass
"""
N, T, D = x.shape
M = b.shape[0]
out = x.reshape(N * T, D).dot(w).reshape(N, T, M) + b
cache = x, w, b, out
return out, cache
def temporal_affine_backward(dout, cache):
"""
Backward pass for temporal affine layer.
Input:
- dout: Upstream gradients of shape (N, T, M)
- cache: Values from forward pass
Returns a tuple of:
- dx: Gradient of input, of shape (N, T, D)
- dw: Gradient of weights, of shape (D, M)
- db: Gradient of biases, of shape (M,)
"""
x, w, b, out = cache
N, T, D = x.shape
M = b.shape[0]
dx = dout.reshape(N * T, M).dot(w.T).reshape(N, T, D)
dw = dout.reshape(N * T, M).T.dot(x.reshape(N * T, D)).T
db = dout.sum(axis=(0, 1))
return dx, dw, db
def temporal_softmax_loss(x, y, mask, verbose=False):
"""
A temporal version of softmax loss for use in RNNs. We assume that we are
making predictions over a vocabulary of size V for each timestep of a
timeseries of length T, over a minibatch of size N. The input x gives scores
for all vocabulary elements at all timesteps, and y gives the indices of the
ground-truth element at each timestep. We use a cross-entropy loss at each
timestep, summing the loss over all timesteps and averaging across the
minibatch.
As an additional complication, we may want to ignore the model output at some
timesteps, since sequences of different length may have been combined into a
minibatch and padded with NULL tokens. The optional mask argument tells us
which elements should contribute to the loss.
Inputs:
- x: Input scores, of shape (N, T, V)
- y: Ground-truth indices, of shape (N, T) where each element is in the range
0 <= y[i, t] < V
- mask: Boolean array of shape (N, T) where mask[i, t] tells whether or not
the scores at x[i, t] should contribute to the loss.
Returns a tuple of:
- loss: Scalar giving loss
- dx: Gradient of loss with respect to scores x.
"""
N, T, V = x.shape
x_flat = x.reshape(N * T, V)
y_flat = y.reshape(N * T)
mask_flat = mask.reshape(N * T)
probs = np.exp(x_flat - np.max(x_flat, axis=1, keepdims=True))
probs /= np.sum(probs, axis=1, keepdims=True)
loss = -np.sum(mask_flat * np.log(probs[np.arange(N * T), y_flat])) / N
dx_flat = probs.copy()
dx_flat[np.arange(N * T), y_flat] -= 1
dx_flat /= N
dx_flat *= mask_flat[:, None]
if verbose: print('dx_flat: ', dx_flat.shape)
dx = dx_flat.reshape(N, T, V)
return loss, dx