-
Notifications
You must be signed in to change notification settings - Fork 63
/
voxelizer.h
1078 lines (885 loc) · 32.4 KB
/
voxelizer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// LICENCE:
// The MIT License (MIT)
//
// Copyright (c) 2016 Karim Naaji, [email protected]
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE
//
// REFERENCES:
// http://matthias-mueller-fischer.ch/publications/tetraederCollision.pdf
// http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox2.txt
//
// HOWTO:
// #define VOXELIZER_IMPLEMENTATION
// #define VOXELIZER_DEBUG // Only if assertions need to be checked
// #include "voxelizer.h"
//
// HISTORY:
// - 0.10.0 (20-03-2017): Add vx_voxelize_snap_3d_grid to voxelize to 3d-textures
// - 0.9.2 (03-01-2017): Fix triangle bounding bouxes bounds for bbox-triangle
// intersection test
// - 0.9.1 (12-10-2016): Add vx_voxelize_pc to generate point cloud as a result
// of voxelization
// - 0.9 (01-05-2016): Initial
//
// TODO:
// - Triangle face merging
//
#ifndef VOXELIZER_H
#define VOXELIZER_H
// ------------------------------------------------------------------------------------------------
// VOXELIZER PUBLIC API
//
#ifndef VOXELIZER_HELPERS
#include <stdlib.h> // malloc, calloc, free
#endif
typedef struct vx_vertex {
union {
float v[3];
struct {
float x;
float y;
float z;
};
struct {
float r;
float g;
float b;
};
};
} vx_vertex_t;
typedef vx_vertex_t vx_vec3_t;
typedef vx_vertex_t vx_color_t;
typedef struct vx_mesh {
vx_vertex_t* vertices; // Contiguous mesh vertices
vx_color_t* colors; // Contiguous vertices colors
vx_vec3_t* normals; // Contiguous mesh normals
unsigned int* indices; // Mesh indices
unsigned int* normalindices; // Mesh normal indices
size_t nindices; // The number of normal indices
size_t nvertices; // The number of vertices
size_t nnormals; // The number of normals
} vx_mesh_t;
typedef struct vx_point_cloud {
vx_vertex_t* vertices; // Contiguous point cloud vertices positions, each vertex corresponds
// to the center of a voxel
vx_color_t* colors; // Contiguous point cloud vertices colors
size_t nvertices; // The number of vertices in the point cloud
} vx_point_cloud_t;
// vx_voxelize_pc: Voxelizes a triangle mesh to a point cloud
vx_point_cloud_t* vx_voxelize_pc(vx_mesh_t const* mesh, // The input mesh
float voxelsizex, // Voxel size on X-axis
float voxelsizey, // Voxel size on Y-axis
float voxelsizez, // Voxel size on Z-axis
float precision); // A precision factor that reduces "holes artifact
// usually a precision = voxelsize / 10. works ok
// vx_voxelize: Voxelizes a triangle mesh to a triangle mesh representing cubes
vx_mesh_t* vx_voxelize(vx_mesh_t const* mesh, // The input mesh
float voxelsizex, // Voxel size on X-axis
float voxelsizey, // Voxel size on Y-axis
float voxelsizez, // Voxel size on Z-axis
float precision); // A precision factor that reduces "holes" artifact
// usually a precision = voxelsize / 10. works ok.
// vx_voxelize_snap_3d_grid: Voxelizes a triangle mesh to a 3d texture
// The texture data is aligned as RGBA8 and can be uploaded as a 3d texture with OpenGL like so:
// glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA8, width, height, depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, texturedata);
unsigned int* vx_voxelize_snap_3dgrid(vx_mesh_t const* mesh, // The input mesh
unsigned int width, // The texture resolution on x-axis
unsigned int height, // The texture resolution on y-axis
unsigned int depth); // The texture resolution on z-axis
// Allocates a mesh that can contain nvertices vertices, nindices indices
vx_mesh_t* vx_mesh_alloc(int nvertices, int nindices);
// Allocates a mesh that can contain nvertices vertices and colors, nindices indices
vx_mesh_t* vx_color_mesh_alloc(int nvertices, int nindices);
// Free a mesh allocated with vx_mesh_alloc, vx_color_mesh_alloc or after a call to vx_voxelize
void vx_mesh_free(vx_mesh_t* mesh);
// Free a point cloud allocated after a call of vx_voxelize_pc
void vx_point_cloud_free(vx_point_cloud_t* pointcloud);
// Voxelizer Helpers, define your own if needed
#ifndef VOXELIZER_HELPERS
#define VOXELIZER_HELPERS 1
#define VX_MIN(a, b) (a > b ? b : a)
#define VX_MAX(a, b) (a > b ? a : b)
#define VX_FINDMINMAX(x0, x1, x2, min, max) \
min = max = x0; \
if (x1 < min) min = x1; \
if (x1 > max) max = x1; \
if (x2 < min) min = x2; \
if (x2 > max) max = x2;
#define VX_CLAMP(v, lo, hi) VX_MAX(lo, VX_MIN(hi, v))
#define VX_MALLOC(T, N) ((T*) malloc(N * sizeof(T)))
#define VX_FREE(T) free(T)
#define VX_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1))
#define VX_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; }
#ifdef VOXELIZER_DEBUG
#define VX_ASSERT(STMT) if (!(STMT)) { *(int *)0 = 0; }
#else
#define VX_ASSERT(STMT)
#endif // VOXELIZER_DEBUG
#endif // VOXELIZER_HELPERS
//
// END VOXELIZER PUBLIC API
// ------------------------------------------------------------------------------------------------
#endif // VOXELIZER_H
#ifdef VOXELIZER_IMPLEMENTATION
#include <math.h> // ceil, fabs & al.
#include <stdbool.h> // hughh
#include <string.h> // memcpy
#define VOXELIZER_EPSILON (0.0000001)
#define VOXELIZER_NORMAL_INDICES_SIZE (6)
#define VOXELIZER_INDICES_SIZE (36)
#define VOXELIZER_HASH_TABLE_SIZE (4096)
unsigned int vx_voxel_indices[VOXELIZER_INDICES_SIZE] = {
0, 1, 2,
0, 2, 3,
3, 2, 6,
3, 6, 7,
0, 7, 4,
0, 3, 7,
4, 7, 5,
7, 6, 5,
0, 4, 5,
0, 5, 1,
1, 5, 6,
1, 6, 2,
};
float vx_normals[18] = {
0.0, -1.0, 0.0,
0.0, 1.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
-1.0, 0.0, 0.0,
0.0, 0.0, -1.0,
};
unsigned int vx_normal_indices[VOXELIZER_NORMAL_INDICES_SIZE] = {
3, 2, 1, 5, 4, 0,
};
typedef struct vx_aabb {
vx_vertex_t min;
vx_vertex_t max;
} vx_aabb_t;
typedef struct vx_edge {
vx_vertex_t p1;
vx_vertex_t p2;
} vx_edge_t;
typedef struct vx_triangle {
union {
vx_vertex_t vertices[3];
struct {
vx_vertex_t p1;
vx_vertex_t p2;
vx_vertex_t p3;
};
};
vx_color_t colors[3];
} vx_triangle_t;
typedef struct vx_hash_table_node {
struct vx_hash_table_node* next;
struct vx_hash_table_node* prev;
void* data;
} vx_hash_table_node_t;
typedef struct vx_hash_table {
vx_hash_table_node_t** elements;
size_t size;
} vx_hash_table_t;
typedef struct vx_voxel_data {
vx_vec3_t position;
vx_color_t color;
} vx_voxel_data_t;
vx_hash_table_t* vx__hash_table_alloc(size_t size)
{
vx_hash_table_t* table = VX_MALLOC(vx_hash_table_t, 1);
table->size = size;
table->elements = VX_CALLOC(vx_hash_table_node_t*, size);
return table;
}
void vx__hash_table_free(vx_hash_table_t* table)
{
for (size_t i = 0; i < table->size; ++i) {
vx_hash_table_node_t* node = table->elements[i];
if (node) {
if (node->next) {
while (node->next) {
node = node->next;
VX_FREE(node->prev->data);
VX_FREE(node->prev);
}
VX_FREE(node);
} else {
VX_FREE(node->data);
VX_FREE(node);
}
}
}
VX_FREE(table->elements);
VX_FREE(table);
}
bool vx__hash_table_insert(vx_hash_table_t* table,
size_t hash,
void* data,
bool (*compfunc)(void* d1, void* d2))
{
if (!table->elements[hash]) {
table->elements[hash] = VX_MALLOC(vx_hash_table_node_t, 1);
table->elements[hash]->prev = NULL;
table->elements[hash]->next = NULL;
table->elements[hash]->data = data;
} else {
vx_hash_table_node_t* node = table->elements[hash];
if (compfunc && compfunc(node->data, data)) {
return false;
}
while (node->next) {
node = node->next;
if (compfunc && compfunc(node->data, data)) {
return false;
}
}
vx_hash_table_node_t* nnode = VX_MALLOC(vx_hash_table_node_t, 1);
nnode->prev = node;
nnode->next = NULL;
nnode->data = data;
node->next = nnode;
}
return true;
}
void vx_mesh_free(vx_mesh_t* mesh)
{
VX_FREE(mesh->vertices);
mesh->vertices = NULL;
mesh->nvertices = 0;
VX_FREE(mesh->indices);
mesh->indices = NULL;
VX_FREE(mesh->normalindices);
mesh->normalindices = NULL;
mesh->nindices = 0;
VX_FREE(mesh->normals);
mesh->normals = NULL;
VX_FREE(mesh->colors);
mesh->colors = NULL;
VX_FREE(mesh);
}
void vx_point_cloud_free(vx_point_cloud_t* pc)
{
VX_FREE(pc->vertices);
pc->vertices = NULL;
VX_FREE(pc->colors);
pc->colors = NULL;
pc->nvertices = 0;
VX_FREE(pc);
}
vx_mesh_t* vx_mesh_alloc(int nvertices, int nindices)
{
vx_mesh_t* mesh = VX_MALLOC(vx_mesh_t, 1);
mesh->indices = VX_CALLOC(unsigned int, nindices);
mesh->normalindices = VX_CALLOC(unsigned int, nindices);
mesh->vertices = VX_CALLOC(vx_vertex_t, nvertices);
mesh->normals = VX_CALLOC(vx_vec3_t, nvertices);
mesh->colors = VX_CALLOC(vx_color_t, nvertices);
mesh->nindices = nindices;
mesh->nnormals = nvertices;
mesh->nvertices = nvertices;
return mesh;
}
vx_mesh_t* vx_color_mesh_alloc(int nvertices, int nindices)
{
vx_mesh_t* mesh = vx_mesh_alloc(nvertices, nindices);
mesh->colors = VX_CALLOC(vx_color_t, nvertices);
if (!mesh->colors) { return NULL; }
return mesh;
}
float vx__map_to_voxel(float position, float voxelSize, bool min)
{
float vox = (position + (position < 0.f ? -1.f : 1.f) * voxelSize * 0.5f) / voxelSize;
return (min ? floor(vox) : ceil(vox)) * voxelSize;
}
vx_vec3_t vx__vec3_cross(vx_vec3_t* v1, vx_vec3_t* v2)
{
vx_vec3_t cross;
cross.x = v1->y * v2->z - v1->z * v2->y;
cross.y = v1->z * v2->x - v1->x * v2->z;
cross.z = v1->x * v2->y - v1->y * v2->x;
return cross;
}
bool vx__vertex_equals_epsilon(vx_vertex_t* v1, vx_vertex_t* v2) {
return fabs(v1->x - v2->x) < VOXELIZER_EPSILON &&
fabs(v1->y - v2->y) < VOXELIZER_EPSILON &&
fabs(v1->z - v2->z) < VOXELIZER_EPSILON;
}
bool vx__vertex_comp_func(void* a, void* b)
{
return vx__vertex_equals_epsilon((vx_vertex_t*) a, (vx_vertex_t*) b);
}
void vx__vec3_sub(vx_vec3_t* a, vx_vec3_t* b)
{
a->x -= b->x;
a->y -= b->y;
a->z -= b->z;
}
float vx__vec3_length2(vx_vec3_t* v)
{
return v->x * v->x + v->y * v->y + v->z * v->z;
}
void vx__vec3_add(vx_vec3_t* a, vx_vec3_t* b)
{
a->x += b->x;
a->y += b->y;
a->z += b->z;
}
void vx__vec3_multiply(vx_vec3_t* a, float v)
{
a->x *= v;
a->y *= v;
a->z *= v;
}
float vx__vec3_dot(vx_vec3_t* v1, vx_vec3_t* v2)
{
return v1->x * v2->x + v1->y * v2->y + v1->z * v2->z;
}
int vx__plane_box_overlap(vx_vec3_t* normal,
float d,
vx_vertex_t* halfboxsize)
{
vx_vertex_t vmin, vmax;
for (int dim = 0; dim <= 2; dim++) {
if (normal->v[dim] > 0.0f) {
vmin.v[dim] = -halfboxsize->v[dim];
vmax.v[dim] = halfboxsize->v[dim];
} else {
vmin.v[dim] = halfboxsize->v[dim];
vmax.v[dim] = -halfboxsize->v[dim];
}
}
if (vx__vec3_dot(normal, &vmin) + d > 0.0f) {
return false;
}
if (vx__vec3_dot(normal, &vmax) + d >= 0.0f) {
return true;
}
return false;
}
#define AXISTEST_X01(a, b, fa, fb) \
p1 = a * v1.y - b * v1.z; \
p3 = a * v3.y - b * v3.z; \
if (p1 < p3) { \
min = p1; max = p3; \
} else { \
min = p3; max = p1; \
} \
rad = fa * halfboxsize.y + fb * halfboxsize.z; \
if (min > rad || max < -rad) { \
return false; \
} \
#define AXISTEST_X2(a, b, fa, fb) \
p1 = a * v1.y - b * v1.z; \
p2 = a * v2.y - b * v2.z; \
if (p1 < p2) { \
min = p1; max = p2; \
} else { \
min = p2; max = p1; \
} \
rad = fa * halfboxsize.y + fb * halfboxsize.z; \
if (min > rad || max < -rad) { \
return false; \
} \
#define AXISTEST_Y02(a, b, fa, fb) \
p1 = -a * v1.x + b * v1.z; \
p3 = -a * v3.x + b * v3.z; \
if (p1 < p3) { \
min = p1; max = p3; \
} else { \
min = p3; max = p1; \
} \
rad = fa * halfboxsize.x + fb * halfboxsize.z; \
if (min > rad || max < -rad) { \
return false; \
} \
#define AXISTEST_Y1(a, b, fa, fb) \
p1 = -a * v1.x + b * v1.z; \
p2 = -a * v2.x + b * v2.z; \
if (p1 < p2) { \
min = p1; max = p2; \
} else { \
min = p2; max = p1; \
} \
rad = fa * halfboxsize.x + fb * halfboxsize.z; \
if (min > rad || max < -rad) { \
return false; \
}
#define AXISTEST_Z12(a, b, fa, fb) \
p2 = a * v2.x - b * v2.y; \
p3 = a * v3.x - b * v3.y; \
if (p3 < p2) { \
min = p3; max = p2; \
} else { \
min = p2; max = p3; \
} \
rad = fa * halfboxsize.x + fb * halfboxsize.y; \
if (min > rad || max < -rad) { \
return false; \
}
#define AXISTEST_Z0(a, b, fa, fb) \
p1 = a * v1.x - b * v1.y; \
p2 = a * v2.x - b * v2.y; \
if (p1 < p2) { \
min = p1; max = p2; \
} else { \
min = p2; max = p1; \
} \
rad = fa * halfboxsize.x + fb * halfboxsize.y; \
if (min > rad || max < -rad) { \
return false; \
}
int vx__triangle_box_overlap(vx_vertex_t boxcenter,
vx_vertex_t halfboxsize,
vx_triangle_t triangle)
{
vx_vec3_t v1, v2, v3, normal, e1, e2, e3;
float min, max, d, p1, p2, p3, rad, fex, fey, fez;
v1 = triangle.p1;
v2 = triangle.p2;
v3 = triangle.p3;
vx__vec3_sub(&v1, &boxcenter);
vx__vec3_sub(&v2, &boxcenter);
vx__vec3_sub(&v3, &boxcenter);
e1 = v2;
e2 = v3;
e3 = v1;
vx__vec3_sub(&e1, &v1);
vx__vec3_sub(&e2, &v2);
vx__vec3_sub(&e3, &v3);
fex = fabs(e1.x);
fey = fabs(e1.y);
fez = fabs(e1.z);
AXISTEST_X01(e1.z, e1.y, fez, fey);
AXISTEST_Y02(e1.z, e1.x, fez, fex);
AXISTEST_Z12(e1.y, e1.x, fey, fex);
fex = fabs(e2.x);
fey = fabs(e2.y);
fez = fabs(e2.z);
AXISTEST_X01(e2.z, e2.y, fez, fey);
AXISTEST_Y02(e2.z, e2.x, fez, fex);
AXISTEST_Z0(e2.y, e2.x, fey, fex);
fex = fabs(e3.x);
fey = fabs(e3.y);
fez = fabs(e3.z);
AXISTEST_X2(e3.z, e3.y, fez, fey);
AXISTEST_Y1(e3.z, e3.x, fez, fex);
AXISTEST_Z12(e3.y, e3.x, fey, fex);
VX_FINDMINMAX(v1.x, v2.x, v3.x, min, max);
if (min > halfboxsize.x || max < -halfboxsize.x) {
return false;
}
VX_FINDMINMAX(v1.y, v2.y, v3.y, min, max);
if (min > halfboxsize.y || max < -halfboxsize.y) {
return false;
}
VX_FINDMINMAX(v1.z, v2.z, v3.z, min, max);
if (min > halfboxsize.z || max < -halfboxsize.z) {
return false;
}
normal = vx__vec3_cross(&e1, &e2);
d = -vx__vec3_dot(&normal, &v1);
if (!vx__plane_box_overlap(&normal, d, &halfboxsize)) {
return false;
}
return true;
}
#undef AXISTEST_X2
#undef AXISTEST_X01
#undef AXISTEST_Y1
#undef AXISTEST_Y02
#undef AXISTEST_Z0
#undef AXISTEST_Z12
float vx__triangle_area(vx_triangle_t* triangle) {
vx_vec3_t ab = triangle->p2;
vx_vec3_t ac = triangle->p3;
vx__vec3_sub(&ab, &triangle->p1);
vx__vec3_sub(&ac, &triangle->p1);
float a0 = ab.y * ac.z - ab.z * ac.y;
float a1 = ab.z * ac.x - ab.x * ac.z;
float a2 = ab.x * ac.y - ab.y * ac.x;
return sqrtf(powf(a0, 2.f) + powf(a1, 2.f) + powf(a2, 2.f)) * 0.5f;
}
void vx__aabb_init(vx_aabb_t* aabb)
{
aabb->max.x = aabb->max.y = aabb->max.z = -INFINITY;
aabb->min.x = aabb->min.y = aabb->min.z = INFINITY;
}
vx_aabb_t vx__triangle_aabb(vx_triangle_t* triangle)
{
vx_aabb_t aabb;
vx__aabb_init(&aabb);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
aabb.max.v[i] = VX_MAX(aabb.max.v[i], triangle->vertices[j].v[i]);
aabb.min.v[i] = VX_MIN(aabb.min.v[i], triangle->vertices[j].v[i]);
}
}
return aabb;
}
vx_vertex_t vx__aabb_center(vx_aabb_t* a)
{
vx_vertex_t boxcenter = a->min;
vx__vec3_add(&boxcenter, &a->max);
vx__vec3_multiply(&boxcenter, 0.5f);
return boxcenter;
}
vx_vertex_t vx__aabb_half_size(vx_aabb_t* a)
{
vx_vertex_t size;
size.x = fabs(a->max.x - a->min.x) * 0.5f;
size.y = fabs(a->max.y - a->min.y) * 0.5f;
size.z = fabs(a->max.z - a->min.z) * 0.5f;
return size;
}
vx_aabb_t vx__aabb_merge(vx_aabb_t* a, vx_aabb_t* b)
{
vx_aabb_t merge;
merge.min.x = VX_MIN(a->min.x, b->min.x);
merge.min.y = VX_MIN(a->min.y, b->min.y);
merge.min.z = VX_MIN(a->min.z, b->min.z);
merge.max.x = VX_MAX(a->max.x, b->max.x);
merge.max.y = VX_MAX(a->max.y, b->max.y);
merge.max.z = VX_MAX(a->max.z, b->max.z);
return merge;
}
size_t vx__vertex_hash(vx_vertex_t pos, size_t n)
{
size_t a = (size_t)(pos.x * 73856093);
size_t b = (size_t)(pos.y * 19349663);
size_t c = (size_t)(pos.z * 83492791);
return (a ^ b ^ c) % n;
}
void vx__add_voxel(vx_mesh_t* mesh,
vx_vertex_t* pos,
vx_color_t color,
float* vertices)
{
for (size_t i = 0; i < 8; ++i) {
size_t index = i+mesh->nvertices;
mesh->vertices[index].x = vertices[i*3+0] + pos->x;
mesh->vertices[index].y = vertices[i*3+1] + pos->y;
mesh->vertices[index].z = vertices[i*3+2] + pos->z;
if (mesh->colors) {
mesh->colors[index].r = color.r;
mesh->colors[index].g = color.g;
mesh->colors[index].b = color.b;
}
}
int j = -1;
for (size_t i = 0; i < VOXELIZER_INDICES_SIZE; ++i) {
if (i % 6 == 0) {
j++;
}
mesh->normalindices[i+mesh->nindices] = vx_normal_indices[j];
}
for (size_t i = 0; i < VOXELIZER_INDICES_SIZE; ++i) {
mesh->indices[i+mesh->nindices] = vx_voxel_indices[i] + mesh->nvertices;
}
mesh->nindices += VOXELIZER_INDICES_SIZE;
mesh->nvertices += 8;
}
vx_hash_table_t* vx__voxelize(vx_mesh_t const* m,
vx_vertex_t vs,
vx_vertex_t hvs,
float precision,
size_t* nvoxels)
{
vx_hash_table_t* table = NULL;
table = vx__hash_table_alloc(VOXELIZER_HASH_TABLE_SIZE);
for (size_t i = 0; i < m->nindices; i += 3) {
vx_triangle_t triangle;
unsigned int i1, i2, i3;
VX_ASSERT(m->indices[i+0] < m->nvertices);
VX_ASSERT(m->indices[i+1] < m->nvertices);
VX_ASSERT(m->indices[i+2] < m->nvertices);
i1 = m->indices[i+0];
i2 = m->indices[i+1];
i3 = m->indices[i+2];
triangle.p1 = m->vertices[i1];
triangle.p2 = m->vertices[i2];
triangle.p3 = m->vertices[i3];
if (m->colors) {
triangle.colors[0] = m->colors[i1];
triangle.colors[1] = m->colors[i2];
triangle.colors[2] = m->colors[i3];
}
if (vx__triangle_area(&triangle) < VOXELIZER_EPSILON) {
// triangle with 0 area
continue;
}
vx_aabb_t aabb = vx__triangle_aabb(&triangle);
aabb.min.x = vx__map_to_voxel(aabb.min.x, vs.x, true);
aabb.min.y = vx__map_to_voxel(aabb.min.y, vs.y, true);
aabb.min.z = vx__map_to_voxel(aabb.min.z, vs.z, true);
aabb.max.x = vx__map_to_voxel(aabb.max.x, vs.x, false);
aabb.max.y = vx__map_to_voxel(aabb.max.y, vs.y, false);
aabb.max.z = vx__map_to_voxel(aabb.max.z, vs.z, false);
for (float x = aabb.min.x; x <= aabb.max.x; x += vs.x) {
for (float y = aabb.min.y; y <= aabb.max.y; y += vs.y) {
for (float z = aabb.min.z; z <= aabb.max.z; z += vs.z) {
vx_aabb_t saabb;
saabb.min.x = x - hvs.x;
saabb.min.y = y - hvs.y;
saabb.min.z = z - hvs.z;
saabb.max.x = x + hvs.x;
saabb.max.y = y + hvs.y;
saabb.max.z = z + hvs.z;
vx_vertex_t boxcenter = vx__aabb_center(&saabb);
vx_vertex_t halfsize = vx__aabb_half_size(&saabb);
// HACK: some holes might appear, this
// precision factor reduces the artifact
halfsize.x += precision;
halfsize.y += precision;
halfsize.z += precision;
if (vx__triangle_box_overlap(boxcenter, halfsize, triangle)) {
vx_vec3_t v1, v2, v3;
vx_color_t c1, c2, c3;
vx_voxel_data_t* nodedata;
float a1, a2, a3;
float area;
nodedata = VX_MALLOC(vx_voxel_data_t, 1);
if (m->colors != NULL) {
// Perform barycentric interpolation of colors
v1 = triangle.p1;
v2 = triangle.p2;
v3 = triangle.p3;
c1 = triangle.colors[0];
c2 = triangle.colors[1];
c3 = triangle.colors[2];
vx_triangle_t t1 = {{{v1, v2, boxcenter}}, {{{{0.0f, 0.0f, 0.0f}}}}};
vx_triangle_t t2 = {{{v2, v3, boxcenter}}, {{{{0.0f, 0.0f, 0.0f}}}}};
vx_triangle_t t3 = {{{v3, v1, boxcenter}}, {{{{0.0f, 0.0f, 0.0f}}}}};
a1 = vx__triangle_area(&t1);
a2 = vx__triangle_area(&t2);
a3 = vx__triangle_area(&t3);
area = a1 + a2 + a3;
vx__vec3_multiply(&c1, a2 / area);
vx__vec3_multiply(&c2, a3 / area);
vx__vec3_multiply(&c3, a1 / area);
vx__vec3_add(&c1, &c2);
vx__vec3_add(&c1, &c3);
nodedata->color = c1;
}
nodedata->position = boxcenter;
size_t hash = vx__vertex_hash(boxcenter, VOXELIZER_HASH_TABLE_SIZE);
bool insert = vx__hash_table_insert(table, hash, nodedata,
vx__vertex_comp_func);
if (insert) {
(*nvoxels)++;
}
}
}
}
}
}
return table;
}
vx_mesh_t* vx_voxelize(vx_mesh_t const* m,
float voxelsizex,
float voxelsizey,
float voxelsizez,
float precision)
{
vx_mesh_t* outmesh = NULL;
vx_hash_table_t* table = NULL;
size_t voxels = 0;
vx_vertex_t vs = {{{voxelsizex, voxelsizey, voxelsizez}}};
vx_vertex_t hvs = vs;
vx__vec3_multiply(&hvs, 0.5f);
table = vx__voxelize(m, vs, hvs, precision, &voxels);
outmesh = VX_MALLOC(vx_mesh_t, 1);
size_t nvertices = voxels * 8;
size_t nindices = voxels * VOXELIZER_INDICES_SIZE;
outmesh->nnormals = VOXELIZER_NORMAL_INDICES_SIZE;
outmesh->vertices = VX_CALLOC(vx_vertex_t, nvertices);
outmesh->normals = VX_CALLOC(vx_vec3_t, 6);
outmesh->colors = m->colors != NULL ? VX_CALLOC(vx_color_t, nvertices) : NULL;
outmesh->indices = VX_CALLOC(unsigned int, nindices);
outmesh->normalindices = VX_CALLOC(unsigned int, nindices);
outmesh->nindices = 0;
outmesh->nvertices = 0;
memcpy(outmesh->normals, vx_normals, 18 * sizeof(float));
float vertices[24] = {
-hvs.x, hvs.y, hvs.z,
-hvs.x, -hvs.y, hvs.z,
hvs.x, -hvs.y, hvs.z,
hvs.x, hvs.y, hvs.z,
-hvs.x, hvs.y, -hvs.z,
-hvs.x, -hvs.y, -hvs.z,
hvs.x, -hvs.y, -hvs.z,
hvs.x, hvs.y, -hvs.z,
};
for (size_t i = 0; i < table->size; ++i) {
if (table->elements[i] != NULL) {
vx_hash_table_node_t* node = table->elements[i];
vx_voxel_data_t* voxeldata;
while (node) {
voxeldata = (vx_voxel_data_t*) node->data;
vx__add_voxel(outmesh, &voxeldata->position, voxeldata->color, vertices);
node = node->next;
}
}
}
vx__hash_table_free(table);
return outmesh;
}
vx_point_cloud_t* vx_voxelize_pc(vx_mesh_t const* mesh,
float voxelsizex,
float voxelsizey,
float voxelsizez,
float precision)
{
vx_point_cloud_t* pc = NULL;
vx_hash_table_t* table = NULL;
size_t voxels = 0;
vx_vec3_t vs = {{{voxelsizex, voxelsizey, voxelsizez}}};
vx_vec3_t hvs = vs;
vx__vec3_multiply(&hvs, 0.5f);
table = vx__voxelize(mesh, vs, hvs, precision, &voxels);
pc = VX_MALLOC(vx_point_cloud_t, 1);
pc->vertices = VX_MALLOC(vx_vec3_t, voxels);
pc->colors = mesh->colors != NULL ? VX_MALLOC(vx_color_t, voxels) : NULL;
pc->nvertices = 0;
for (size_t i = 0; i < table->size; ++i) {
if (!table->elements[i]) { continue; }
vx_hash_table_node_t* node = table->elements[i];
vx_voxel_data_t* voxeldata;
while (node) {
voxeldata = (vx_voxel_data_t*) node->data;
if (pc->colors) { pc->colors[pc->nvertices] = voxeldata->color; }
pc->vertices[pc->nvertices++] = voxeldata->position;
node = node->next;
}
}
vx__hash_table_free(table);
return pc;
}
unsigned int vx__rgbaf32_to_abgr8888(float rgba[4])
{
unsigned int color =
(((unsigned int)(255.0f * rgba[3]) & 0xff) << 24) |
(((unsigned int)(255.0f * rgba[2]) & 0xff) << 16) |
(((unsigned int)(255.0f * rgba[1]) & 0xff) << 8) |
(((unsigned int)(255.0f * rgba[0]) & 0xff) << 0);
return color;
}
void vx__abgr8888_to_rgbaf32(unsigned int abgr8888,
float (*rgbaf32)[4])
{
(*rgbaf32)[0] = ((abgr8888 >> 0) & 0xff) / 255.0f;
(*rgbaf32)[1] = ((abgr8888 >> 8) & 0xff) / 255.0f;
(*rgbaf32)[2] = ((abgr8888 >> 16) & 0xff) / 255.0f;
(*rgbaf32)[3] = ((abgr8888 >> 24) & 0xff) / 255.0f;
}
unsigned int vx__mix(unsigned int abgr88880,
unsigned int abgr88881)
{
float rgba0[4];
float rgba1[4];
float out[4];
vx__abgr8888_to_rgbaf32(abgr88880, &rgba0);
vx__abgr8888_to_rgbaf32(abgr88881, &rgba1);
for (int i = 0; i < 4; ++i) {
out[i] = rgba0[i] * 0.5f + rgba1[i] * 0.5f;
}
return vx__rgbaf32_to_abgr8888(out);
}
unsigned int* vx_voxelize_snap_3dgrid(vx_mesh_t const* m,
unsigned int width,
unsigned int height,
unsigned int depth)
{
vx_aabb_t* aabb = NULL;
vx_aabb_t* meshaabb = NULL;
float ax, ay, az;
VX_ASSERT(m->colors);
for (size_t i = 0; i < m->nindices; i += 3) {
vx_triangle_t triangle;
unsigned int i1, i2, i3;
VX_ASSERT(m->indices[i+0] < m->nvertices);
VX_ASSERT(m->indices[i+1] < m->nvertices);
VX_ASSERT(m->indices[i+2] < m->nvertices);
i1 = m->indices[i+0];
i2 = m->indices[i+1];
i3 = m->indices[i+2];
triangle.p1 = m->vertices[i1];
triangle.p2 = m->vertices[i2];
triangle.p3 = m->vertices[i3];
if (!meshaabb) {
meshaabb = VX_MALLOC(vx_aabb_t, 1);