-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatlab_sim_estimator.py
769 lines (649 loc) · 34.3 KB
/
matlab_sim_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
from collections import OrderedDict as ODict
from collections import Iterable
import glob
import math
import numpy as np
from scipy.io import loadmat
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
from car_dynamics import RearDriveFrontSteerEst, RearDriveFrontSteerSubStateVelEst, cal_vxvy_from_coord
from utilities import create_filtered_estimates, create_dyn_obj, plot_stuff
def fit_and_plot(A_list, B, all_params, model_tag, axs, t_vec, ys, est_params=['sl_r', 'sl_f', 'sc_r', 'sc_f', 'fr'], ylabels=['vx dot', 'vy dot', 'yaw rate dot']):
assert len(ylabels) >= len(
ys), "Labels should be at least as long as the fitted data but instead got {} and {}".format(len(ylabels), len(ys))
A = np.concatenate(A_list, axis=0)
# perform least square
parameters, residuals, _, _ = np.linalg.lstsq(A, B, rcond=None)
assert len(parameters) == len(
est_params), "Key for parameters should be of the same length as matrices"
# calculate mse from this set of parameters
mse = ((np.matmul(A, parameters) - B)**2).mean()
# save parameters to the dictionary
param_dict = {}
for key, parameter in zip(est_params, parameters):
param_dict[key] = parameter[0]
all_params['param_list'].append(param_dict)
all_params['mse'].append(mse)
all_params['model'].append(model_tag)
# save to best parameter if mse is lower
if mse < all_params['best']['mse']:
all_params['best']['param'] = param_dict
all_params['best']['model'] = model_tag
all_params['best']['mse'] = mse
# plot the comparison
for i, (y, ylabel) in enumerate(zip(ys, ylabels[:len(ys)])):
axs[i].plot(t_vec, y, label='true')
axs[i].plot(t_vec, np.matmul(A_list[i], parameters), label='fit')
axs[i].set_xlabel('Time')
axs[i].set_ylabel(ylabel)
axs[i].legend()
axs[i].grid(True, "both")
def fit_and_plot_vxvy(t_vec, x, y, yaw, vx, vy, fig_num=1):
# get LS fit for vx & vy
dts = np.diff(t_vec, axis=0).T
state = np.concatenate((x[:-1, :], y[:-1, :], yaw[:-1, :]), axis=1).T
state_prev = np.concatenate((x[1:, :], y[1:, :], yaw[1:, :]), axis=1).T
vxy = cal_vxvy_from_coord(state, state_prev, dts)
vxy = -vxy # shouldn't need to adjust!
# plot the results comparing read values against fitted values
fig, axs = plt.subplots(1, 2, constrained_layout=True, num=fig_num)
axs[0].plot(t_vec, vx, label='data')
axs[0].plot(t_vec[:-1, :], vxy[0, :], label='fit')
axs[0].set_xlabel('Time (s)')
axs[0].set_ylabel('Vx (m/s)')
axs[0].legend()
axs[0].grid(True, "both")
axs[1].plot(t_vec, vy, label='data')
axs[1].plot(t_vec[:-1, :], vxy[1, :], label='fit')
axs[1].set_xlabel('Time (s)')
axs[1].set_ylabel('Vy (m/s)')
axs[1].legend()
axs[1].grid(True, "both")
return vxy
def bind_npi_pi(angles):
angles = np.fmod(angles + math.pi, 2*math.pi)
angles[angles < 0] += 2*math.pi
angles -= math.pi
return angles
def forward_integrate_ode(init_state, axs, ays, ws, t_vec):
t_vec = t_vec[:, 0]
ws = ws[:, 0]
ws[1:] = ws[:-1]
axs = axs[:, 0]
axs[1:] = axs[:-1]
ays = ays[:, 0]
ays[1:] = ays[:-1]
def dyn_model(t, z):
# get current states
heading = z[2]
vx = z[3]
vy = z[4]
# get inputs via linear interpolation
w = np.interp(t, t_vec, ws)
ax = np.interp(t, t_vec, axs)
ay = np.interp(t, t_vec, ays)
# calculate derivative
x_dot = vx*math.cos(heading) - vy*math.sin(heading)
y_dot = vx*math.sin(heading) + vy*math.cos(heading)
theta_dot = w
vx_dot = ax + vy*w
vy_dot = ay - vx*w
dzdt = [x_dot, y_dot, theta_dot, vx_dot, vy_dot]
return dzdt
# use ODE solver to integrate the model
solver_states = solve_ivp(dyn_model, [
t_vec[0], t_vec[-1]], init_state, method='RK45', t_eval=t_vec)
solver_states.y[2, :] = bind_npi_pi(solver_states.y[2, :])
return solver_states
def forward_integrate_kinematic(init_state, axs, ays, ws, t_vec):
states = np.zeros((5, len(t_vec)))
states[:, 0] = init_state
dts = np.diff(t_vec, axis=0)
# first order Euler forward integration
for j in range(1, len(t_vec)):
# get previous states
heading = states[2, j-1]
vx = states[3, j-1]
vy = states[4, j-1]
# get previous inputs
w = ws[j-1, 0]
ax = axs[j-1, 0]
ay = ays[j-1, 0]
dt = dts[j-1, 0]
x_dot = vx*math.cos(heading) - vy*math.sin(heading)
y_dot = vx*math.sin(heading) + vy*math.cos(heading)
theta_dot = w
vx_dot = ax + vy*w
vy_dot = ay - vx*w
states[:, j] = states[:, j-1] + dt * \
np.array([x_dot, y_dot, theta_dot, vx_dot, vy_dot])
states[2, :] = bind_npi_pi(states[2, :])
return states
def plot_states_evol(states, solver_states, x, y, yaw, vx, vy, t_vec):
fig, axs = plt.subplots(2, 2, constrained_layout=True, num=0)
# plot the states
xaxis_gts = [x, t_vec, t_vec, t_vec]
xaxis_integrates = [states[0, :], t_vec, t_vec, t_vec]
xaxis_solver_integrates = [solver_states[0, :], t_vec, t_vec, t_vec]
xlabels = ['X (m)', 'Time (s)', 'Time (s)', 'Time (s)']
yaxis_gts = [y, yaw, vx, vy]
yaxis_integrates = [states[1, :], states[2, :], states[3, :], states[4, :]]
yaxis_solver_integrates = [
solver_states[1, :], solver_states[2, :], solver_states[3, :], solver_states[4, :]]
ylabels = ['Y (m)', 'Heading (rad)', 'Vx (m/s)', 'Vy (m/s)']
i = 0
j = 0
for xaxis_gt, xaxis_integrate, xaxis_solver_integrate, xlabel, yaxis_gt, yaxis_integrate, yaxis_solver_integrate, ylabel in zip(xaxis_gts, xaxis_integrates, xaxis_solver_integrates, xlabels, yaxis_gts, yaxis_integrates, yaxis_solver_integrates, ylabels):
axs[i, j].plot(xaxis_gt, yaxis_gt, label='gt')
axs[i, j].plot(xaxis_integrate, yaxis_integrate, label='integrate')
axs[i, j].plot(xaxis_solver_integrate,
yaxis_solver_integrate, label='RK45 integrate')
axs[i, j].set_xlabel(xlabel)
axs[i, j].set_ylabel(ylabel)
axs[i, j].grid(True, "both")
axs[i, j].legend()
j += 1
if j >= 2:
i += 1
j = 0
def least_square_test(param_dict, data, threshold_ws=20.0, yaw_rate_derivative=False, estimate_vx_vy=False, use_fitted_vx_vy=False):
# get the constants from the dictionary
m = param_dict["m"]
iz = param_dict["iz"]
lf = param_dict["lf"]
lr = param_dict["lr"]
ref = param_dict["ref"]
rer = param_dict["rer"]
g = param_dict["g"]
# get friction data
friction = np.array(data['friction']).T
friction = friction[0, :].flatten()
# best parameter dictionary to be filled and returned
all_params = {}
# iterate through the unique friction data
unique_frictions = np.unique(friction)
for ref_friction in unique_frictions:
all_params[ref_friction] = {}
all_params[ref_friction]['param_list'] = []
all_params[ref_friction]['mse'] = []
all_params[ref_friction]['model'] = []
all_params[ref_friction]['best'] = {}
all_params[ref_friction]['best']['mse'] = float('inf')
# get front wheel speed, rear wheel speed and steering angle
wheelspeed = np.array(data['wheelspeed'])
wheelangle = np.array(data['wheelangle'])
wf = 0.5*(wheelspeed[:, 0:1] + wheelspeed[:, 1:2])
wr = 0.5*(wheelspeed[:, 2:3] + wheelspeed[:, 3:4])
steering_angle = 0.5*(wheelangle[:, 0:1] + wheelangle[:, 1:2])
# use wheel speed to threshold data when the vehicle is moving
filter_condition = (np.abs(wr) > threshold_ws).flatten()
filter_condition = np.logical_and(
filter_condition, friction == ref_friction)
wf = wf[filter_condition, :]
wr = wr[filter_condition, :]
steering_angle = steering_angle[filter_condition, :]
# time vector
t_vec = np.array(data['tvec'])[filter_condition, :]
# get lateral and longitudinal velocity
vx = np.array(data['vx'])[filter_condition, :]
vy = np.array(data['vy'])[filter_condition, :]
dts = np.diff(t_vec, axis=0)
vxdot = np.diff(vx, axis=0)/dts
vydot = np.diff(vy, axis=0)/dts
# get yawrate
w = np.array(data['yawrate'])[filter_condition, :]
wdot = np.diff(w, axis=0)/dts
# get lateral and longitudinal acceleration
ax = np.array(data['ax'])[filter_condition, :]
ay = np.array(data['ay'])[filter_condition, :]
# get kinematic states
x = np.array(data['x'])[filter_condition, :]
y = np.array(data['y'])[filter_condition, :]
yaw = np.array(data['heading'])[filter_condition, :]
# fit lateral & longitudinal velocity using position derivative and heading
fig_num = 1
if estimate_vx_vy:
vxy = fit_and_plot_vxvy(t_vec, x, y, yaw, vx, vy, fig_num=fig_num)
fig_num += 1
# adjust data indices if derivatives are to be used
if yaw_rate_derivative or (estimate_vx_vy and use_fitted_vx_vy):
if estimate_vx_vy and use_fitted_vx_vy:
vx = vxy[0:1, :].T
vy = vxy[1:2, :].T
else:
vx = vx[:-1, :]
vy = vy[:-1, :]
ax = ax[:-1, :]
ay = ay[:-1, :]
t_vec = t_vec[:-1, :]
x = x[:-1, :]
y = y[:-1, :]
yaw = yaw[:-1, :]
w = w[:-1, :]
wf = wf[:-1, :]
wr = wr[:-1, :]
steering_angle = steering_angle[:-1, :]
# forward integrate the model with yaw rate and inertial acceleration as inputs
init_state = [x[0, 0], y[0, 0], yaw[0, 0], vx[0, 0], vy[0, 0]]
states = forward_integrate_kinematic(init_state, ax, ay, w, t_vec)
solver_states = forward_integrate_ode(
init_state, ax.copy(), ay.copy(), w.copy(), t_vec.copy())
plot_states_evol(states, solver_states.y, x, y, yaw, vx, vy, t_vec)
#compose a least square problem in cr, cf, dr, df and fr
sigma_xf = ref*wf - vx
sigma_xf[sigma_xf < 0.0] /= vx[sigma_xf < 0.0]
sigma_xf[sigma_xf > 0.0] /= ref*wf[sigma_xf > 0.0]
"""
sigma_xf[(sigma_xf < 0.0) & (np.logical_not(np.isclose(vx, 0.0)))
] /= vx[(sigma_xf < 0.0) & (np.logical_not(np.isclose(vx, 0.0)))]
sigma_xf[(sigma_xf < 0.0) & (np.isclose(vx, 0.0))] = 0.0
sigma_xf[(sigma_xf > 0.0) & (np.logical_not(np.isclose(wf, 0.0)))
] /= (ref * wf[(sigma_xf > 0.0) & (np.logical_not(np.isclose(wf, 0.0)))])
sigma_xf[(sigma_xf > 0.0) & (np.isclose(wf, 0.0))] = 0.0
"""
sigma_xr = rer*wr - vx
sigma_xr[sigma_xr < 0.0] /= vx[sigma_xr < 0.0]
sigma_xr[sigma_xr > 0.0] /= rer*wr[sigma_xr > 0.0]
"""
sigma_xr[(sigma_xr < 0.0) & (np.logical_not(np.isclose(vx, 0.0)))
] /= vx[(sigma_xr < 0.0) & (np.logical_not(np.isclose(vx, 0.0)))]
sigma_xr[(sigma_xr < 0.0) & (np.isclose(vx, 0.0))] = 0.0
sigma_xr[(sigma_xr > 0.0) & (np.logical_not(np.isclose(wr, 0.0)))
] /= (rer * wr[(sigma_xr > 0.0) & (np.logical_not(np.isclose(wr, 0.0)))])
sigma_xr[(sigma_xr > 0.0) & (np.isclose(wr, 0.0))] = 0.0
"""
rx = m*g*np.ones(sigma_xr.shape)
theta_vf = (vy + lf*w)/vx
theta_vr = (vy - lr*w)/vx
"""
theta_vf = np.zeros(rx.shape)
theta_vr = np.zeros(rx.shape)
theta_vf[np.logical_not(np.isclose(vx, 0.0))] = (vy[np.logical_not(np.isclose(
vx, 0.0))] + lf*w[np.logical_not(np.isclose(vx, 0.0))])/vx[np.logical_not(np.isclose(vx, 0.0))]
theta_vr[np.logical_not(np.isclose(vx, 0.0))] = (vy[np.logical_not(np.isclose(
vx, 0.0))] - lr*w[np.logical_not(np.isclose(vx, 0.0))])/vx[np.logical_not(np.isclose(vx, 0.0))]
theta_vf[(np.isclose(vx, 0.0)) & (np.logical_not(
np.isclose(vy + lf*w, 0.0)))] = 0.5*math.pi
theta_vr[(np.isclose(vx, 0.0)) & (np.logical_not(
np.isclose(vy + lf*w, 0.0)))] = 0.5*math.pi
"""
alpha_f = steering_angle - theta_vf
alpha_r = -theta_vr
### The first subset of figures not considering aerodynamic drag
if yaw_rate_derivative:
num_cols = 3
else:
num_cols = 2
fig, axs = plt.subplots(
4, num_cols, constrained_layout=True, num=fig_num)
fig_num += 1
fig.suptitle(
'Friction coefficient of {} + no aerodynamic drag'.format(ref_friction))
## first least square: separate front and back coeffs + don't neglect driven wheel long. force
# construct matrices
B = np.concatenate((ax, ay))
y_list = [ax, ay]
A1 = np.concatenate((sigma_xr/m, sigma_xf*np.cos(steering_angle)/m,
np.zeros(alpha_f.shape), -alpha_f*np.sin(steering_angle)/m, -rx/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape), sigma_xf*np.sin(steering_angle)/m,
alpha_r/m, alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape)), axis=1)
A3 = np.concatenate((np.zeros(alpha_f.shape), lf*sigma_xf*np.sin(steering_angle)/iz, -
lr*alpha_r/iz, lf*alpha_f*np.cos(steering_angle)/iz, np.zeros(alpha_f.shape)), axis=1)
A_list = [A1, A2]
if yaw_rate_derivative:
B = np.concatenate((B, wdot))
y_list.append(wdot)
A_list.append(A3)
model_tag = "separate front & back coeffs + don't neglect driven wheel long. force + no aerodynamic drag"
fit_and_plot(A_list, B, all_params[ref_friction], model_tag, axs[0, :], t_vec, y_list, est_params=[
'sl_r', 'sl_f', 'sc_r', 'sc_f', 'fr'])
## second least square: separate front and back coeffs + neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m, np.zeros(alpha_f.shape),
alpha_f*np.sin(steering_angle)/m, -rx/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape),
alpha_r/m, alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape)), axis=1)
A3 = np.concatenate((np.zeros(alpha_f.shape), -lr*alpha_r/iz, lf *
alpha_f*np.cos(steering_angle)/iz, np.zeros(alpha_f.shape)), axis=1)
A_list = [A1, A2]
if yaw_rate_derivative:
A_list.append(A3)
model_tag = "separate front & back coeffs + neglect driven wheel long. force + no aerodynamic drag"
fit_and_plot(A_list, B, all_params[ref_friction], model_tag, axs[1, :], t_vec, y_list, est_params=[
'sl_r', 'sc_r', 'sc_f', 'fr'])
## third least square: same front and back coeffs + don't neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m + sigma_xf*np.cos(steering_angle)/m,
-alpha_f*np.sin(steering_angle)/m, -rx/m), axis=1)
A2 = np.concatenate((sigma_xf*np.sin(steering_angle)/m,
alpha_r/m + alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape)), axis=1)
A3 = np.concatenate((lf*sigma_xf*np.sin(steering_angle)/iz, -lr*alpha_r /
iz + lf*alpha_f*np.cos(steering_angle)/iz, np.zeros(alpha_f.shape)), axis=1)
A_list = [A1, A2]
if yaw_rate_derivative:
A_list.append(A3)
model_tag = "same front & back coeffs + don't neglect driven wheel long. force + no aerodynamic drag"
fit_and_plot(A_list, B, all_params[ref_friction], model_tag,
axs[2, :], t_vec, y_list, est_params=['sl_r', 'sc_r', 'fr'])
## fourth least square: same front and back coeffs + neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m,
-alpha_f*np.sin(steering_angle)/m, -rx/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape),
alpha_r/m + alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape)), axis=1)
A3 = np.concatenate((np.zeros(alpha_f.shape), -lr*alpha_r/iz + lf *
alpha_f*np.cos(steering_angle)/iz, np.zeros(alpha_f.shape)), axis=1)
A_list = [A1, A2]
if yaw_rate_derivative:
A_list.append(A3)
model_tag = "same front & back coeffs + neglect driven wheel long. force + no aerodynamic drag"
fit_and_plot(A_list, B, all_params[ref_friction], model_tag,
axs[3, :], t_vec, y_list, est_params=['sl_r', 'sc_r', 'fr'])
### The second subset of figures considering aerodynamic drag
fig, axs = plt.subplots(
4, num_cols, constrained_layout=True, num=fig_num)
fig_num += 1
fig.suptitle(
'Friction coefficient of {} + aerodynamic drag'.format(ref_friction))
## first least square: separate front and back coeffs + don't neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m, sigma_xf*np.cos(steering_angle)/m,
np.zeros(alpha_f.shape), -alpha_f*np.sin(steering_angle)/m, -rx/m, -(vx**2)/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape), sigma_xf*np.sin(steering_angle)/m,
alpha_r/m, alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
A3 = np.concatenate((np.zeros(alpha_f.shape), lf*sigma_xf*np.sin(steering_angle)/iz, -
lr*alpha_r/iz, lf*alpha_f*np.cos(steering_angle)/iz, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
A_list = [A1, A2]
if yaw_rate_derivative:
A_list.append(A3)
model_tag = "separate front & back coeffs + don't neglect driven wheel long. force + aerodynamic drag"
fit_and_plot(A_list, B, all_params[ref_friction], model_tag, axs[0, :], t_vec, y_list, est_params=[
'sl_r', 'sl_f', 'sc_r', 'sc_f', 'fr', 'da'])
## second least square: separate front and back coeffs + neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m,
np.zeros(alpha_f.shape), alpha_f*np.sin(steering_angle)/m, -rx/m, -(vx**2)/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape),
alpha_r/m, alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
A3 = np.concatenate((np.zeros(alpha_f.shape), -lr*alpha_r/iz, lf *
alpha_f*np.cos(steering_angle)/iz, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
A_list = [A1, A2]
if yaw_rate_derivative:
A_list.append(A3)
model_tag = "separate front & back coeffs + neglect driven wheel long. force + aerodynamic drag"
fit_and_plot(A_list, B, all_params[ref_friction], model_tag, axs[1, :], t_vec, y_list, est_params=[
'sl_r', 'sc_r', 'sc_f', 'fr', 'da'])
## third least square: same front and back coeffs + don't neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m + sigma_xf*np.cos(steering_angle)/m,
-alpha_f*np.sin(steering_angle)/m, -rx/m, -(vx**2)/m), axis=1)
A2 = np.concatenate((sigma_xf*np.sin(steering_angle)/m,
alpha_r/m + alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
A3 = np.concatenate((lf*sigma_xf*np.sin(steering_angle)/iz, -lr*alpha_r /
iz + lf*alpha_f*np.cos(steering_angle)/iz, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
A_list = [A1, A2]
if yaw_rate_derivative:
A_list.append(A3)
model_tag = "same front & back coeffs + don't neglect driven wheel long. force + aerodynamic drag"
fit_and_plot(A_list, B, all_params[ref_friction], model_tag, axs[2, :], t_vec, y_list, est_params=[
'sl_r', 'sc_r', 'fr', 'da'])
## fourth least square: same front and back coeffs + neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m,
-alpha_f*np.sin(steering_angle)/m, -rx/m, -(vx**2)/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape),
alpha_r/m + alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
A3 = np.concatenate((np.zeros(alpha_f.shape), -lr*alpha_r/iz + lf *
alpha_f*np.cos(steering_angle)/iz, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
A_list = [A1, A2]
if yaw_rate_derivative:
A_list.append(A3)
model_tag = "same front & back coeffs + neglect driven wheel long. force + aerodynamic drag"
fit_and_plot(A_list, B, all_params[ref_friction], model_tag, axs[3, :], t_vec, y_list, est_params=[
'sl_r', 'sc_r', 'fr', 'da'])
"""
### The third subset of figure do consider aerodynamic drag but instead use numerically differenced long & lat acceleration
fig, axs = plt.subplots(4, 2, constrained_layout=True, num=3)
fig.suptitle(
'Friction coefficient of {} + aerodynamic drag + numerically differenced ax & ay'.format(ref_friction))
# use everything until the last index
vx = vx[:-1, :]
vy = vy[:-1, :]
w = w[:-1, :]
t_vec = t_vec[:-1, :]
sigma_xr = sigma_xr[:-1, :]
sigma_xf = sigma_xf[:-1, :]
steering_angle = steering_angle[:-1, :]
alpha_f = alpha_f[:-1, :]
alpha_r = alpha_r[:-1, :]
rx = rx[:-1, :]
## first least square: separate front and back coeffs + don't neglect driven wheel long. force
# construct matrices
B = np.concatenate((vxdot, vydot))
B -= np.concatenate((vy*w, -vx*w))
A1 = np.concatenate((sigma_xr/m, sigma_xf*np.cos(steering_angle)/m,
np.zeros(alpha_f.shape), -alpha_f*np.sin(steering_angle)/m, -rx/m, -(vx**2)/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape), sigma_xf*np.sin(steering_angle)/m,
alpha_r/m, alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
model_tag = "separate front & back coeffs + don't neglect driven wheel long. force + aerodynamic drag + use numerically differenced vx & vy as ax & ay"
fit_and_plot(A1, A2, B, all_params[ref_friction], model_tag, axs[0, :], t_vec, vxdot, vydot, est_params=[
'sl_r', 'sl_f', 'sc_r', 'sc_f', 'fr', 'da'])
## second least square: separate front and back coeffs + neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m,
np.zeros(alpha_f.shape), alpha_f*np.sin(steering_angle)/m, -rx/m, -(vx**2)/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape),
alpha_r/m, alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
model_tag = "separate front & back coeffs + neglect driven wheel long. force + aerodynamic drag + use numerically differenced vx & vy as ax & ay"
fit_and_plot(A1, A2, B, all_params[ref_friction], model_tag, axs[1, :],
t_vec, vxdot, vydot, est_params=['sl_r', 'sc_r', 'sc_f', 'fr', 'da'])
## third least square: same front and back coeffs + don't neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m + sigma_xf*np.cos(steering_angle)/m,
-alpha_f*np.sin(steering_angle)/m, -rx/m, -(vx**2)/m), axis=1)
A2 = np.concatenate((sigma_xf*np.sin(steering_angle)/m,
alpha_r/m + alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
model_tag = "same front & back coeffs + don't neglect driven wheel long. force + aerodynamic drag + use numerically differenced vx & vy as ax & ay"
fit_and_plot(A1, A2, B, all_params[ref_friction], model_tag, axs[2, :],
t_vec, vxdot, vydot, est_params=['sl_r', 'sc_r', 'fr', 'da'])
## fourth least square: same front and back coeffs + neglect driven wheel long. force
# construct matrices
A1 = np.concatenate((sigma_xr/m,
-alpha_f*np.sin(steering_angle)/m, -rx/m, -(vx**2)/m), axis=1)
A2 = np.concatenate((np.zeros(alpha_f.shape),
alpha_r/m + alpha_f*np.cos(steering_angle)/m, np.zeros(alpha_f.shape), np.zeros(vx.shape)), axis=1)
model_tag = "same front & back coeffs + neglect driven wheel long. force + aerodynamic drag + use numerically differenced vx & vy as ax & ay"
fit_and_plot(A1, A2, B, all_params[ref_friction], model_tag, axs[3, :],
t_vec, vxdot, vydot, est_params=['sl_r', 'sc_r', 'fr', 'da'])
"""
plt.show()
print(all_params)
return all_params
def get_data_indices(data, threshold_ws):
# extract wheel speed
wheelspeed = np.array(data['wheelspeed'])
wr = 0.5*(wheelspeed[:, 2:3] + wheelspeed[:, 3:4])
first_index = 0
for i in range(len(wr)):
if wr[i, :] > threshold_ws:
first_index = i
break
for i in range(len(wr)-1, -1, -1):
if wr[i, :] > threshold_ws:
last_index = i
break
return (first_index, last_index)
def extract_model(data, data_indices, dynamic_obj):
# timing matrices
T = np.array(data['tvec'])[data_indices[0]:data_indices[1]+1, :].flatten()
nt = len(T)
dts = np.diff(T)
dts = np.append(dts, dts[-1])
# models
def process_model(x, u, noise, input_noise, dt, param_dict): return dynamic_obj.forward_prop(
x, dynamic_obj.dxdt(x, u + input_noise, param_dict), dt) + noise
def observation_model(
x, u, noise, param_dict): return dynamic_obj.output_model(x, u, param_dict) + noise
# additional arguments
additional_args_pm_list = np.zeros((2, nt)).tolist()
additional_args_om_list = np.zeros((1, nt)).tolist()
additional_args_pm_list[0] = dts
additional_args_pm_list[1] = [dynamic_obj.param_dict]*nt
additional_args_om_list[0] = [dynamic_obj.param_dict]*nt
dynamic_obj.T = T
dynamic_obj.process_model = process_model
dynamic_obj.observation_model = observation_model
dynamic_obj.additional_args_pm_list = additional_args_pm_list
dynamic_obj.additional_args_om_list = additional_args_om_list
def extract_input(data, data_indices, dynamic_obj):
nt = data_indices[1] - data_indices[0] + 1
U = np.zeros((dynamic_obj.num_in, nt))
wheelspeed = np.array(data['wheelspeed']).T
wheelangle = np.array(data['wheelangle']).T
w = np.array(data['yawrate']).T
U[0:1, :] = 0.5*(wheelspeed[0, data_indices[0]:data_indices[1]+1] +
wheelspeed[1, data_indices[0]:data_indices[1]+1])
U[1:2, :] = 0.5*(wheelspeed[2, data_indices[0]:data_indices[1]+1] +
wheelspeed[3, data_indices[0]:data_indices[1]+1])
U[2:3, :] = 0.5*(wheelangle[0, data_indices[0]:data_indices[1]+1] +
wheelangle[1, data_indices[0]:data_indices[1]+1])
U[3:4, :] = w[0, data_indices[0]:data_indices[1]+1]
dynamic_obj.U = U
def extract_output(data, data_indices, data_filename, configuration, dynamic_obj):
# check if mapping exists in the data file
for key in configuration['output_data_keys']:
assert key in data.keys(), "Key {} not present in data file {}".format(key, data_filename)
for key in configuration['output_data_dot_keys']:
assert key in data.keys(), "Key {} not present in data file {}".format(key, data_filename)
# extract data
nt = data_indices[1] - data_indices[0] + 1
num_out = dynamic_obj.num_out
outputs = np.zeros((num_out, nt))
index = 0
for key in configuration['output_data_keys']:
if key == 'ax' or key == 'ay':
outputs[index:index+1,
:] = np.array(data[key])[data_indices[0]-1:data_indices[1], :].T
else:
outputs[index:index+1,
:] = np.array(data[key])[data_indices[0]:data_indices[1]+1, :].T
index += 1
for key in configuration['output_data_dot_keys']:
outputs[index:index+1,
:] = np.array(data[key])[data_indices[0]:data_indices[1]+1, :].T
index += 1
dynamic_obj.outputs = outputs
return True
def extract_initial_cond(data, data_indices, configuration, dynamic_obj, first_file, continue_estimation):
# put in the dynamic states
for key, index in dynamic_obj.global_state_dict.items():
dynamic_obj.initial_cond[index] = data[configuration['data_state_mapping']
[key]][data_indices[0]][0]
# reset the parameters if requested
if not continue_estimation:
est_params = configuration.get('est_params', [])
if not isinstance(est_params, Iterable):
est_params = [est_params]
init_params = configuration.get('init_params', [])
if not isinstance(init_params, Iterable):
init_params = [init_params]
for est_param, init_param in zip(est_params, init_params):
assert est_param in dynamic_obj.state_dict.keys(
), "Parameter {} to be estimated is not registered in state dictionary".format(est_param)
dynamic_obj.initial_cond[dynamic_obj.state_dict[est_param]] = init_param
elif not first_file:
dynamic_obj.P0 = np.copy(dynamic_obj.P_end)
# assume absolute confidence in initial condition
for index in dynamic_obj.global_state_dict.values():
dynamic_obj.P0[index, :] = 0.0
dynamic_obj.P0[:, index] = 0.0
print(dynamic_obj.initial_cond)
print(dynamic_obj.P0)
if __name__ == '__main__':
# create instance of filter
method = 'CKF'
order = 2
# get a list of matlab files in the folder
folder_name = './matlab_sim_data/'
mat_files = glob.glob(folder_name + '*.mat')
# parameter dictionary based on single matlab file
data = loadmat(mat_files[0])
print(data.keys())
radii = data['wheelradii'][0]
param_dict = ODict([('m', float(data['m'])), ('iz', float(data['I'])), ('lf', float(data['lf'])), ('lr', float(
data['lr'])), ('ref', 0.5*(float(radii[0])+float(radii[1]))), ('rer', 0.5*(float(radii[2])+float(radii[3]))), ('g', 9.81), ('rho', 1.225), ('af', 1.6 + 0.00056*(float(data['m']) - 765.0)), ('sl_f', 0.0)])
# configuration for testing the estimator + create dynamic object
configuration = {'output_keys': ['vx', 'vy', 'ax', 'ay'],
'output_data_keys': ['vx', 'vy', 'ax', 'ay'],
'output_dot_keys': [],
'output_data_dot_keys': [],
'est_params': ['fr', 'sl_r', 'sc_f', 'sc_r', 'da'],
'init_params': [0.0, 0.0, 0.0, 0.0, 0.0],
'init_param_cov': [1e1, 1e1, 1e1, 1e1, 1e1],
'std_x': 0.05,
'std_y': 0.05,
'std_theta': 0.5*math.pi/180.0,
'std_vx': 1e-2,
'std_vy': 1e-2,
'std_ax': 1e-2,
'std_ay': 1e-2,
'std_w': 0.25*math.pi/180.0,
'std_x_out': 0.1,
'std_y_out': 0.1,
'std_theta_out': math.pi/180.0,
'std_vx_out': 0.05,
'std_vy_out': 0.05,
'std_ax_out': 0.05,
'std_ay_out': 0.05,
'std_vx_dot_out': 0.05,
'std_vy_dot_out': 0.05,
'std_theta_dot_out': math.pi/180.0,
'time_varying_q': 0.0,
'threshold_ws': 20.0}
configuration['data_state_mapping'] = {
'x': 'x', 'y': 'y', 'theta': 'heading', 'vx': 'vx', 'vy': 'vy', 'w': 'yawrate', 'ax': 'ax', 'ay': 'ay'}
dynamic_obj = create_dyn_obj(
RearDriveFrontSteerSubStateVelEst, param_dict, **configuration)
first_file = True
# expect to restart from previous cycle (previous mat file?)
continue_estimation = False
# load the data from matlab file
for mat_file in mat_files:
# read data
data = loadmat(mat_file)
# perform lls fitting
lls_params = least_square_test(
param_dict, data, threshold_ws=configuration['threshold_ws'], estimate_vx_vy=True, use_fitted_vx_vy=False, yaw_rate_derivative=False)
# Use initial condition of parameters based on LLS (for debugging purposes) to check dynamic model
first_friction = data['friction'][0][0]
for i, key in enumerate(configuration['est_params']):
if key != 'cd':
configuration['init_params'][i] = lls_params[first_friction]['best']['param'][key]
else:
configuration['init_params'][i] = 2*lls_params[first_friction]['best']['param']['da']/(
param_dict['rho']*param_dict['af'])
param_dict[key] = configuration['init_params'][i]
# get data filter based on wheel speed threshold
data_indices = get_data_indices(data, configuration['threshold_ws'])
if data_indices[1] - data_indices[0] + 1 < 0:
continue
# create process and observation models
extract_model(data, data_indices, dynamic_obj)
# extract input from data
extract_input(data, data_indices, dynamic_obj)
# extract output from data
extract_output(data, data_indices, mat_file,
configuration, dynamic_obj)
# get initial condition from data
extract_initial_cond(data, data_indices, configuration,
dynamic_obj, first_file, continue_estimation)
# perform filtering
est_states, cov_states = create_filtered_estimates(
dynamic_obj, method, order)
dynamic_obj.P_end = cov_states[:, :, -1]
dynamic_obj.initial_cond = est_states[:, -1:]
# plot the evolution of states and parameters
plot_stuff(dynamic_obj, est_states, angle_states=configuration.get('angle_states', []), data_state_mapping=configuration.get(
'data_state_mapping', {}), data=data, data_indices=data_indices, num_rows=[2, 2])
if first_file:
first_file = False