forked from ramprs/neuron-importance-zsl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
alpha2w.py
1024 lines (839 loc) · 48.6 KB
/
alpha2w.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Finetune a network in tensorflow on the CUB dataset
import argparse
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import sys
import ntpath
import json
import pdb
import random
import torchfile
import importlib
from scipy.stats import spearmanr
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import scipy.io as scio
import tensorflow as tf
import tensorflow.contrib.slim as slim
import tensorflow.contrib.slim.nets as nets
from tensorflow.python.ops import array_ops
from tensorflow.python import pywrap_tensorflow
from pprint import pprint
import pickle
from dotmap import DotMap
import glob
import itertools
from itertools import groupby
from random import shuffle
from tqdm import tqdm
sys.path.insert(0, '/nethome/rrs6/models/research/slim')
SEED = 1111
tf.set_random_seed(SEED)
random.seed(SEED)
"""
Some classes in Scott Reed's captions
are named differently than the
original CUB_200_2011 folder
"""
CUB_FNAME_FIX = {'093.Clark_Nutcracker': '093.Clarks_Nutcracker',
'124.Le_Conte_Sparrow': '124.Le_Contes_Sparrow',
'180.Wilson_Warbler': '180.Wilsons_Warbler',
'125.Lincoln_Sparrow': '125.Lincolns_Sparrow',
'023.Brandt_Cormorant': '023.Brandts_Cormorant',
'178.Swainson_Warbler': '178.Swainsons_Warbler',
'122.Harris_Sparrow': '122.Harriss_Sparrow',
'113.Baird_Sparrow': '113.Bairds_Sparrow',
'123.Henslow_Sparrow': '123.Henslows_Sparrow',
'098.Scott_Oriole': '098.Scotts_Oriole',
'061.Heermann_Gull': '061.Heermanns_Gull',
'022.Chuck_will_Widow': '022.Chuck_wills_Widow',
'193.Bewick_Wren': '193.Bewicks_Wren',
'067.Anna_Hummingbird': '067.Annas_Hummingbird',
'126.Nelson_Sharp_tailed_Sparrow': '126.Nelsons_Sparrow',
'115.Brewer_Sparrow': '115.Brewers_Sparrow',
'009.Brewer_Blackbird': '009.Brewers_Blackbird'}
parser = argparse.ArgumentParser()
parser.add_argument('--config_json', default='./arg_configs/vgg16_config_AWA_full.json')
VGG_MEAN = [123.68, 116.78, 103.94]
def uhead_plotter(l1, l2, l3, l4, l5, l6, directory, mode):
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(range(len(l1)), l1, label='seen_seen')
ax1.plot(range(len(l2)), l2, label='unseen_unseen')
ax1.plot(range(len(l3)), l3, label='seen_unseen_seen_unseen')
ax1.plot(range(len(l4)), l4, label='seen_seen_unseen')
ax1.plot(range(len(l5)), l5, label='unseen_seen_unseen')
ax1.plot(range(len(l6)), l6, label='harmonic')
plt.legend()
plt.title(mode)
fig.savefig(directory + mode + '.png')
plt.close(fig)
def uhead_plotter_loss(l1,directory, mode):
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(range(len(l1)), l1, label=' val set')
plt.legend()
plt.title(mode)
fig.savefig(directory + mode + '.png')
plt.close(fig)
def parse_json(json_file):
with open(json_file, 'r') as f:
data = json.load(f)
return data
def norm1(a):
return np.sum(np.abs(a))
def entropy(ls):
print(ls)
probs = {x:ls.count(x)/len(ls) for x in ls}
p = np.array(list(probs.values()))
return -p.dot(np.log2(p))
def encode_attributes_class(config, imlabelist):
im_attr = {}
cls_attr = {}
# Use class level supervision
if config.supervision=='class':
class_att_labels = []
with open(config.classattrdir) as f:
for n, line in enumerate(f):
l = [x for x in line.rstrip().split(" ") ]
l = [x for x in l if x]
#l = l.remove('')
l = [float(x) if float(x)!=-1.00 else 0 for x in l ]
cls_attr[n]=l
class_att_labels.append(l)
class_att_labels = np.array(class_att_labels)
#class_att_avg = np.mean(class_att_labels, axis = 0)
for c in range(int(config.n_class)):
imids = [k for k,v in im_attr.items() if v['cls'] == c]
for id in imids:
im_attr[id] = {}
im_attr[id]['att']= class_att_labels[c]/np.max(class_att_labels)
return im_attr, cls_attr
def encode_tfidf(tf_file, imlabelist, config):
# Function to encode the TF-IDF features from wikipedia articles
# Make this compatible with Ram's attribute encoding function
attrdir = './data/CUB/11083D_TFIDF.mat'
tf_idf = scio.loadmat(attrdir)['PredicateMatrix']
im_attr = {}
print('Encoding TF-IDF....')
for i in tqdm(range(len(imlabelist))):
#print(tf_idf[imlabelist[i]-1].tolist())
im_attr[str(i+1)] = {}
im_attr[str(i+1)]['att'] = tf_idf[imlabelist[i]-1].tolist()
return im_attr
def encode_captions(cap_dir, imlist_new, imlabelist, config):
# config.attrdir has to be 2 directories joined as strings default argument to use
# In interest of time, we're only doing w2v captions
# Get caption text dir and feature dir
attrdir = './data/CUB/text_c10,./data/CUB/w2v_c10'
cap_dir = attrdir.split(',')[0]
feat_dir = attrdir.split(',')[1]
# Load appropriate mapping
all_f = glob.glob(cap_dir + '/*/*.txt')
all_f = sorted(all_f)
all_f = [x.replace('./','').replace('.txt', '.jpg').replace(cap_dir + '/', '') for x in all_f]
# Load all class t7 files
t7_dict = {}
class_names = list(set([x.split('/')[0] for x in imlist_new]))
print('Loading caption feature files..')
for i in class_names:
fname = i
if fname in list(CUB_FNAME_FIX.keys()):
fname = CUB_FNAME_FIX[fname]
t7_dict[i] = torchfile.load(feat_dir + '/' + fname + '.t7')
im_attr = {}
cls_attr = {}
# Do this iteratively
print('Encoding captions...')
for i in tqdm(range(len(imlist_new))):
imname = imlist_new[i]
class_id = int(imlist_new[i].split('.')[0])-1
# Image name to class-t7 file
class_name = imname.split('/')[0]
data = t7_dict[class_name]
imind = all_f.index(imname)
indlist = sorted([all_f.index(x) for x in all_f if class_name in x])
pos = indlist.index(imind)
feat = data[pos].T
#im_attr[str(i+1)] = {}
im_attr[str(i+1)] = np.mean(feat, axis=0).tolist()
if class_id in cls_attr:
cls_attr[class_id].append(np.mean(feat, axis=0))
else:
cls_attr[class_id] = []
cls_attr[class_id].append(np.mean(feat, axis=0))
for id in cls_attr:
cls_attr[id] = np.array(cls_attr[id]).mean(axis=0)
return im_attr, cls_attr
def im_imid_map(imagelist):
im_imid = {}
imid_im = {}
with open(imagelist) as f:
for line in f:
l = line.rstrip('\n').split(" ")
im_imid[ntpath.basename(l[1])] = l[0]
imid_im[l[0]] = ntpath.basename(l[1])
return im_imid, imid_im
def get_alphas(config, imattrlist, checkpoint_path):
graph = tf.Graph()
regularizer = tf.contrib.layers.l2_regularizer(scale=0.1)
num_input = len(imattrlist[0])
# load dom2alpha model
if config.dom2alpha_model =='linear':
n_alphas = int(config.n_alphas)
weights = {'out': tf.Variable(tf.random_normal([num_input, n_alphas]))}
biases = {'out': tf.Variable(tf.random_normal([n_alphas]))}
adam_vars = [x for x in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if 'beta' in x.name]
def neural_net(x):
out_layer = tf.add(tf.matmul(x, weights['out']), biases['out'])
return out_layer
text = tf.placeholder(tf.float32, [None, int(config.n_attr)])
out = neural_net(text)
elif config.dom2alpha_model=='multilayer':
n_alphas = int(config.n_alphas)
def multilayer_perceptron(x):
layer_1 = tf.contrib.layers.fully_connected(x, num_outputs=int(config.n_hidden_1), activation_fn=tf.nn.relu, weights_regularizer=regularizer)
layer_2 = tf.contrib.layers.fully_connected(layer_1, num_outputs=int(config.n_hidden_2), activation_fn=tf.nn.relu, weights_regularizer=regularizer)
out_layer = tf.contrib.layers.fully_connected(layer_2, num_outputs=n_alphas, activation_fn=None, weights_regularizer=regularizer)
return out_layer
# Construct model
text = tf.placeholder(tf.float32, [None, int(config.n_attr)])
out = multilayer_perceptron(text)
elif config.dom2alpha_model=='2layer':
n_alphas = int(config.n_alphas)
def multilayer_perceptron(x):
layer_1 = tf.contrib.layers.fully_connected(x, num_outputs=int(config.n_hidden), activation_fn=tf.nn.relu, weights_regularizer=regularizer)
#layer_2 = tf.contrib.layers.fully_connected(layer_1, num_outputs=int(config.n_hidden_2), activation_fn=tf.nn.relu, weights_regularizer=regularizer)
out_layer = tf.contrib.layers.fully_connected(layer_1, num_outputs=n_alphas, activation_fn=None, weights_regularizer=regularizer)
return out_layer
# Construct model
text = tf.placeholder(tf.float32, [None, int(config.n_attr)])
out = multilayer_perceptron(text)
saver = tf.train.Saver()
sess = tf.Session()
init_op = tf.initialize_all_variables()
saver.restore(sess, checkpoint_path)
alpha_val = sess.run(out, feed_dict={text:imattrlist})
return alpha_val
def load_class_splits(split_file, class_listf):
# Create a mapping for the reduced classes
# Load class splits from split_file
class_split = scio.loadmat(split_file)
# Get train class-IDs
train_cid = class_split['train_cid'][0].tolist()
test_cid = class_split['test_cid'][0].tolist()
# Load all classes and ignore classes that are not in the seen set
test_unseen_class = []
for line in open(class_listf, 'r').readlines():
classID = int(line.strip('\n').split(' ')[0])
class_name = line.strip('\n').split(' ')[1]
if classID in test_cid:
test_unseen_class.append((classID-1, class_name))
# Create mapping
ids = sorted([x[0] for x in test_unseen_class])
idmaps = {}
idmaps_inv = {}
for i in range(len(ids)):
idmaps[ids[i]] = i
idmaps_inv[i] = ids[i]
idmaps_seen = {}
idmaps_seen_inv = {}
for i in range(len(train_cid)):
idmaps_seen[train_cid[i] - 1] = i
idmaps_seen_inv[i] = train_cid[i] - 1
idmaps_all = {}
idmaps_all_inv = {}
for i in range(len(train_cid)+len(test_cid)):
if i < len(train_cid):
idmaps_all[train_cid[i] - 1] = i
idmaps_all_inv[i] = train_cid[i] - 1
#print(train_cid[i] -1)
else:
idmaps_all[ids[i-len(train_cid)]] = i
idmaps_all_inv[i] = ids[i-len(train_cid)]
return test_unseen_class, idmaps, idmaps_all, idmaps_seen, idmaps_inv, idmaps_all_inv, idmaps_seen_inv
def load_data(config, fname,test_unseen_class, idmaps, idmaps_all, idmaps_seen, idmaps_inv, idmaps_all_inv, idmaps_seen_inv, imagedir, imagelist, imagelabellist, train_test_split_list):
# Check if files exist or not
im_imid, imid_im = im_imid_map(config.imagelist)
# Create proper train, val and test splits from the CUB dataset
imlist = [x.strip('\n').split(' ')[1] for x in open(imagelist, 'r').readlines()]
imidlist = [x.strip('\n').split(' ')[0] for x in open(imagelist, 'r').readlines()]
imlabelist = [int(y.strip('\n').split(' ')[1])-1 for y in open(imagelabellist, 'r').readlines()]
#############################################################################################################################
# Load New imagelist
if config.modality == 'attributes':
im_attr, cls_attr = encode_attributes_class(config,imlabelist)
elif config.modality == 'wikipedia':
im_attr = encode_tfidf(config.attrdir, imlabelist, config)
elif config.modality == 'captions':
imlist_new = [x.strip('\n').split(' ')[1] for x in open(config.imagelist, 'r').readlines()]
im_attr, cls_attr = encode_captions(config.attrdir, imlist_new, imlabelist, config)
else:
print("Modality not supported")
# print(im_attr.keys())
#############################################################################################################################
imattrlist = [cls_attr[x] for x in imlabelist]
clsattralphas = {}
clsattralphas_list = get_alphas(config, list(cls_attr.values()), config.text2alpha_ckpt).tolist()
for h in cls_attr:
clsattralphas[h] = clsattralphas_list[h]
# Remove all instances of unseen classes from the dataset
req_im, req_im_seen, req_imclass, req_imattr, req_attralpha, req_split = [], [], [], [], [], []
with open (config.sampling_images, 'rb') as fp:
files = pickle.load(fp)
shuffle(files)
seen_im_list = files[:3000]
unseen_test_split_file = config.unseen_test_split_file
seen_test_split_file = config.seen_test_split_file
with open(unseen_test_split_file,'r') as fj:
data = json.load(fj)
for d in data:
req_im.append(d[0])
req_imclass.append(int(d[1]))
req_imattr.append(cls_attr[int(d[1])])
req_attralpha.append(clsattralphas[idmaps_inv[int(d[1])]])
req_im_seen.append(seen_im_list[random.randint(0,len(seen_im_list)-1)])
req_dataset = list(zip(req_im, req_im_seen, req_imclass, req_imattr, req_attralpha))
shuffle(req_dataset)
train_split = req_dataset
print("size of train dataset", len(train_split))
req_dataset = list(zip(req_im,req_im_seen, req_imclass, req_imattr, req_attralpha))
val_split = req_dataset
train_split = [(x[0], x[1], x[2], x[3], x[4]) for x in train_split]
val_split = [(x[0], x[1], x[2], x[3], x[4]) for x in val_split]
print("size of val dataset", len(val_split))
# Create test split seen classes --> for debugging
req_im, req_imclass, req_imattr, req_attralpha, req_split = [], [], [], [], []
with open(seen_test_split_file,'r') as fj:
data = json.load(fj)
for d in data:
req_im.append(d[0])
req_imclass.append(int(d[1]))
req_imattr.append(cls_attr[int(d[1])])
req_attralpha.append(clsattralphas[idmaps_seen_inv[int(d[1])]])
#req_im_seen.append(seen_im_list[random.randint(0,len(seen_im_list)-1)])
req_split.append(0)
whole_dataset = list(zip(req_im, req_imclass, req_attralpha, req_split))
train_split_seen = [(x[0], x[1], x[2]) for x in whole_dataset if x[3]==0]
# Create test split for all classes --> generalized zsl
req_im, req_imclass, req_imattr, req_attralpha, req_split = [], [], [], [], []
with open(seen_test_split_file,'r') as fj:
data = json.load(fj)
for d in data:
req_im.append(d[0])
req_imclass.append(int(d[1]))
req_imattr.append(cls_attr[int(d[1])])
req_attralpha.append(clsattralphas[idmaps_seen_inv[int(d[1])]])
#req_im_seen.append(seen_im_list[random.randint(0,len(seen_im_list)-1)])
req_split.append(0)
with open(unseen_test_split_file,'r') as fj:
data = json.load(fj)
for d in data:
req_im.append(d[0])
req_imclass.append(int(d[1])+int(config.n_seen))
req_imattr.append(cls_attr[int(d[1])])
req_attralpha.append(clsattralphas[idmaps_inv[int(d[1])]])
#req_im_seen.append(seen_im_list[random.randint(0,len(seen_im_list)-1)])
req_split.append(0)
print("test dataset: number of images from both seen and unseen classes: ", len(req_im))
whole_dataset = list(zip(req_im, req_imclass, req_attralpha, req_split))
test_split = [(x[0], x[1], x[2]) for x in whole_dataset if x[3]==0]
req_im, req_imclass, req_imattr, req_attralpha, req_split = [], [], [], [], []
with open(seen_test_split_file,'r') as fj:
data = json.load(fj)
for d in data:
req_im.append(d[0])
req_imclass.append(int(d[1]))
req_attralpha.append(clsattralphas[idmaps_seen_inv[int(d[1])]])
#req_im_seen.append(seen_im_list[random.randint(0,len(seen_im_list)-1)])
req_split.append(0)
whole_dataset = list(zip(req_im, req_imclass, req_attralpha, req_split))
test_split_seen = [(x[0], x[1], x[2]) for x in whole_dataset if x[3]==0]
req_im, req_imclass, req_imattr, req_attralpha, req_split = [], [], [], [], []
with open(unseen_test_split_file,'r') as fj:
data = json.load(fj)
for d in data:
req_im.append(d[0])
req_imclass.append(int(d[1])+int(config.n_seen))
req_attralpha.append(clsattralphas[idmaps_inv[int(d[1])]])
#req_im_seen.append(seen_im_list[random.randint(0,len(seen_im_list)-1)])
req_split.append(0)
whole_dataset = list(zip(req_im, req_imclass, req_attralpha, req_split))
test_split_unseen = [(x[0], x[1], x[2]) for x in whole_dataset if x[3]==0]
print("length of whole test dataset: ", len(test_split))
print("length of whole test_seen dataset: ", len(test_split_seen))
print("length of whole test_unseen dataset: ", len(test_split_unseen))
return train_split, val_split, test_split, test_split_seen, test_split_unseen, train_split_seen
def check_accuracy(sess, prediction, imclass, accuracy, is_training, dataset_init_op, verbose=False):
# Check accuracy on train or val
# Initialize the dataset
sess.run(dataset_init_op)
#num_correct, num_samples = 0, 0
acc_list = []
while True:
try:
acc, prediction_val, imclass_val= sess.run([accuracy, prediction, imclass], {is_training: False})
if verbose:
print("pred: ", prediction_val)
print("gt cls:", imclass_val)
acc_list.append(acc)
except tf.errors.OutOfRangeError:
break
final_acc = np.mean(np.array(acc_list))
#return float(num_correct)/num_samples
return final_acc
def check_accuracy_normalized(sess, prediction, imclass, accuracy, is_training, dataset_init_op, verbose=False):
# Check accuracy on train or val
# Initialize the dataset
sess.run(dataset_init_op)
acc_list = []
whole_pred_list = []
whole_label_list = []
while True:
try:
acc, prediction_val, imclass_val= sess.run([accuracy, prediction, imclass], {is_training: False})
if verbose:
print("pred: ", prediction_val)
print("gt cls:", imclass_val)
acc_list.append(acc)
# Get of unique predictions
if isinstance(prediction_val,int):
prediction_val = np.array([prediction_val])
if isinstance(imclass_val,int):
imclass_val = np.array([imclass_val])
try:
whole_pred_list += prediction_val.tolist()
whole_label_list += imclass_val.tolist()
except TypeError:
break
except tf.errors.OutOfRangeError:
break
final_acc = np.mean(np.array(acc_list))
# Get unique classes
unique_cls = list(set(whole_label_list))
# Find incices corresponding to a class
all_cls_acc = []
for y in unique_cls:
gt_indices = [i for i,x in enumerate(whole_label_list) if x == y]
acc_clas = float([whole_pred_list[i] for i in gt_indices].count(y))/len(gt_indices)
all_cls_acc.append(acc_clas)
# print("pred list:", whole_pred_list)
# print("label list:", whole_label_list)
return np.mean(all_cls_acc)
# return final_acc
def main(args):
# Load config JSON and use the arguments
config = parse_json(args.config_json)
pprint(config)
config = DotMap(config)
print("loading class splits ..")
test_unseen_class, idmaps, idmaps_all, idmaps_seen, idmaps_inv, idmaps_all_inv, idmaps_seen_inv = load_class_splits(config.split_file, config.class_listf)
#test_unseen_class, idmaps, idmaps_all, idmaps_seen = load_class_splits(config.split_file, config.class_listf)
# Load the dataset splits
print('Loading data...')
# train_split, val_split, test_split, test_split_seen, test_split_unseen, train_split_seen = load_data(config, config.save_path.split('/')[0], test_unseen_class, idmaps, idmaps_all, idmaps_seen, config.imagedir, config.imagelist, config.imagelabellist, config.train_test_split_list, float(config.train_prop), float(config.val_prop), float(config.test_prop))
train_split, val_split, test_split, test_split_seen, test_split_unseen, train_split_seen = load_data(config, config.save_path.split('/')[0], test_unseen_class, idmaps, idmaps_all, idmaps_seen, idmaps_inv, idmaps_all_inv, idmaps_seen_inv, config.imagedir, config.imagelist, config.imagelabellist, config.train_test_split_list)
train_files,seen_train_files, train_imclass, train_imattr, train_attralpha= map(list, zip(*train_split))
val_files,seen_val_files, val_imclass, val_imattr, val_attralpha = map(list, zip(*val_split))
test_files, test_labels, test_attralpha = map(list, zip(*test_split))
test_files_seen, test_labels_seen, test_attralpha_seen = map(list, zip(*test_split_seen))
train_files_seen, train_labels_seen, train_attralpha_seen = map(list, zip(*train_split_seen))
test_files_unseen, test_labels_unseen, test_attralpha_unseen = map(list, zip(*test_split_unseen))
train_imclass = np.array(train_imclass).astype('int32')
val_imclass = np.array(val_imclass).astype('int32')
test_labels = np.array(test_labels).astype('int32')
test_labels_seen = np.array(test_labels_seen).astype('int32')
test_labels_unseen = np.array(test_labels_unseen).astype('int32')
# Write graph definition based on model name
# Define the computation graph with necessary functions
graph = tf.Graph()
with graph.as_default():
# Preprocessing function and module import
preprocess_module_name = 'preprocessing.' + config.preprocess_fn
preprocess_module = importlib.import_module(preprocess_module_name)
# Get image size
mc = getattr(nets, config.model_class, None)
m = getattr(mc, config.model_name, None)
#im_size = getattr(m, 'default_image_size', None)
im_size = int(config.image_size)
# Parsing an pre-processing function
def _parse_function_seen(seen_filename, imclass, attralpha):
image_f = tf.read_file(seen_filename)
image_dec = tf.image.decode_jpeg(image_f, channels=3)
image = tf.cast(image_dec, tf.float32)
# Resize image
res_img = tf.image.resize_images(image, [im_size, im_size])
# attralpha_noise = tf.random_normal([int(config.n_alphas)])
return res_img, imclass, attralpha
# Substitute for parse_function seen+ unseen uncluding preprocessing
def parse_fn_train(filename, imclass, attralpha):
image_file = tf.read_file(filename)
image = tf.image.decode_jpeg(image_file, channels=3)
processed_image = preprocess_module.preprocess_image(image, im_size, im_size, is_training=False)
return processed_image, imclass, attralpha
def _parse_function_noise(seen_filename, imclass, attralpha):
image_f = tf.read_file(seen_filename)
image_dec = tf.image.decode_jpeg(image_f, channels=3)
image = tf.cast(image_dec, tf.float32)
# Resize image
res_img = tf.image.resize_images(image, [im_size, im_size])
img = tf.random_normal([im_size, im_size, 3], mean=0, stddev=1.0)
img = tf.div(tf.subtract(img, tf.reduce_min(img)), tf.subtract(tf.reduce_max(img), tf.reduce_min(img)))
img = tf.cast(img*255.0, tf.int32)
res_img_noise = tf.cast(img, tf.float32)
res_img = res_img_noise
return res_img, imclass, attralpha
# Parsing an pre-processing function
def _parse_function_val(filename, imclass, attralpha):
image_f = tf.read_file(filename)
image_dec = tf.image.decode_jpeg(image_f, channels=3)
image = tf.cast(image_dec, tf.float32)
# Resize image
res_img = tf.image.resize_images(image, [im_size, im_size])
return res_img, imclass, attralpha
# preprocessing function
def prepro(image, imclass, attralpha):
means = tf.reshape(tf.constant(VGG_MEAN), [1, 1, 3])
proc_img = image - means
return proc_img, imclass, attralpha
# Dataset creation
# Training dataset
print("Creating datasets..")
train_files = tf.constant(train_files)
seen_train_files = tf.constant(seen_train_files)
train_imclass = tf.constant(train_imclass)
train_attralpha = tf.constant(train_attralpha)
train_dataset = tf.contrib.data.Dataset.from_tensor_slices((seen_train_files, train_imclass, train_attralpha))
if config.prepro == 'unified':
train_dataset = train_dataset.map(parse_fn_train, num_threads=int(config.batch_size), output_buffer_size = int(config.batch_size))
else:
if config.sampling_mode =='noise':
train_dataset = train_dataset.map(_parse_function_noise, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
train_dataset = train_dataset.map(prepro, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
else:
train_dataset = train_dataset.map(_parse_function_seen, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
train_dataset = train_dataset.map(prepro, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
train_dataset = train_dataset.shuffle(buffer_size=len(train_split))
batched_train_dataset = train_dataset.batch(int(config.batch_size))
# Validation dataset
val_files = tf.constant(val_files)
val_imclass = tf.constant(val_imclass)
val_attralpha = tf.constant(val_attralpha)
val_dataset = tf.contrib.data.Dataset.from_tensor_slices((val_files, val_imclass, val_attralpha))
if config.prepro == 'unified':
val_dataset = val_dataset.map(parse_fn_train, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
else:
val_dataset = val_dataset.map(_parse_function_val, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
val_dataset = val_dataset.map(prepro, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
batched_val_dataset = val_dataset.batch(int(config.batch_size))
# Test dataset
test_files = tf.constant(test_files)
test_labels = tf.constant(test_labels)
test_attralpha = tf.constant(test_attralpha)
test_dataset = tf.contrib.data.Dataset.from_tensor_slices((test_files, test_labels, test_attralpha))
if config.prepro == 'unified':
test_dataset = test_dataset.map(parse_fn_train, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
else:
test_dataset = test_dataset.map(_parse_function_val, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
test_dataset = test_dataset.map(prepro, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
batched_test_dataset = test_dataset.batch(int(config.batch_size))
test_files_seen = tf.constant(test_files_seen)
test_labels_seen = tf.constant(test_labels_seen)
test_attralpha_seen = tf.constant(test_attralpha_seen)
test_dataset_seen = tf.contrib.data.Dataset.from_tensor_slices((test_files_seen, test_labels_seen, test_attralpha_seen))
if config.prepro =='unified':
test_dataset_seen = test_dataset_seen.map(parse_fn_train, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
else:
test_dataset_seen = test_dataset_seen.map(_parse_function_val, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
test_dataset_seen = test_dataset_seen.map(prepro, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
batched_test_dataset_seen = test_dataset_seen.batch(int(config.batch_size))
# Test dataset unseen
test_files_unseen = tf.constant(test_files_unseen)
test_labels_unseen = tf.constant(test_labels_unseen)
test_attralpha_unseen = tf.constant(test_attralpha_unseen)
test_dataset_unseen = tf.contrib.data.Dataset.from_tensor_slices((test_files_unseen, test_labels_unseen, test_attralpha_unseen))
# test_dataset_unseen = test_dataset_unseen.map(parse_fn_train, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
if config.prepro =='unified':
test_dataset_unseen = test_dataset_unseen.map(parse_fn_train, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
else:
test_dataset_unseen = test_dataset_unseen.map(_parse_function_val, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
test_dataset_unseen = test_dataset_unseen.map(prepro, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
batched_test_dataset_unseen = test_dataset_unseen.batch(int(config.batch_size))
# Train dataset seen
train_files_seen = tf.constant(train_files_seen)
train_labels_seen = tf.constant(train_labels_seen)
train_attralpha_seen = tf.constant(train_attralpha_seen)
train_dataset_seen = tf.contrib.data.Dataset.from_tensor_slices((train_files_seen, train_labels_seen, train_attralpha_seen))
#train_dataset_seen = train_dataset_seen.map(parse_fn_train, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
if config.prepro =='unified':
train_dataset_seen = train_dataset_seen.map(parse_fn_train, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
else:
train_dataset_seen = train_dataset_seen.map(_parse_function_val, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
train_dataset_seen = train_dataset_seen.map(prepro, num_threads=int(config.batch_size), output_buffer_size=int(config.batch_size))
batched_train_dataset_seen = train_dataset_seen.batch(int(config.batch_size))
# Define iterator that operates on either of the splits
iterator = tf.contrib.data.Iterator.from_structure(batched_train_dataset.output_types, batched_train_dataset.output_shapes)
images, imclass, attralpha = iterator.get_next()
train_init_op = iterator.make_initializer(batched_train_dataset)
val_init_op = iterator.make_initializer(batched_val_dataset)
test_init_op = iterator.make_initializer(batched_test_dataset)
test_seen_init_op = iterator.make_initializer(batched_test_dataset_seen)
train_seen_init_op = iterator.make_initializer(batched_train_dataset_seen)
test_unseen_init_op = iterator.make_initializer(batched_test_dataset_unseen)
# Boolean variable for train-vs-test
is_training = tf.placeholder(tf.bool)
# Define the global step to be some tf.Variable
global_step_tensor = tf.Variable(0, trainable=False, name='global_step', dtype=tf.int32)
model_c = getattr(nets, config.model_class, None)
model = getattr(model_c, config.model_name, None)
arg_scope = getattr(model_c, config.scope, None)
# Get number of classes in train and test
n_seen = int(config.n_seen)
n_unseen = int(config.n_unseen)
print("Defining model from .. ", model_c )
with slim.arg_scope(arg_scope(weight_decay=float(0))):
print("--------------------------Using original network---------------------------------------------------------------")
# with slim.arg_scope(arg_scope()):
if config.base_model == 'resnet':
logits, endpoints = model(images, num_classes=n_seen, is_training=is_training)
else:
logits, endpoints = model(images, num_classes=n_seen, is_training=is_training, dropout_keep_prob=bool(config.dropout))
if config.base_model == 'resnet':
fc8_seen_weights = tf.contrib.framework.get_variables(config.penultimate_seen_weights)
fc8_seen_biases = tf.contrib.framework.get_variables('resnet_v1_101/logits/biases:0')
else:
fc8_seen_weights = tf.contrib.framework.get_variables('vgg_16/fc8/weights:0')
fc8_seen_biases = tf.contrib.framework.get_variables('vgg_16/fc8/biases:0')
# Check for model path
# assert(os.path.isfile(config.ckpt_path))
if config.base_model =='resnet':
if config.ckpt == 'old':
orig_ckpt = config.orig_ckpt_path
orig_ckpt_reader = pywrap_tensorflow.NewCheckpointReader(orig_ckpt)
new_ckpt_reader = pywrap_tensorflow.NewCheckpointReader(config.ckpt_path)
new_var_to_shape_map = new_ckpt_reader.get_variable_to_shape_map()
orig_var_to_shape_map = orig_ckpt_reader.get_variable_to_shape_map()
vars_in_orig_ckpt = [key for key in sorted(orig_var_to_shape_map)]
vars_in_new_ckpt = [key for key in sorted(new_var_to_shape_map)]
vars_in_graph = [x.name.split(':')[0] for x in tf.contrib.framework.get_variables()]
# Variables to borrow from old ckpt
vars_to_borrow = list(set(list(set(vars_in_graph) - set(vars_in_new_ckpt))) & set(vars_in_orig_ckpt))
# Variables to initialize
# vars_to_init = list(set(vars_in_graph) - set(vars_to_borrow))
vars_to_init = list(set(vars_in_graph) - set(vars_to_borrow + vars_in_new_ckpt))
# Old ckpt init function
old_ckpt_init_fn = tf.contrib.framework.assign_from_checkpoint_fn(orig_ckpt, [x for x in tf.contrib.framework.get_variables() if (x.name.split(':')[0] in vars_to_borrow) and ('global_step' not in x.name)])
# New ckpt init function
new_ckpt_init_fn = tf.contrib.framework.assign_from_checkpoint_fn(config.ckpt_path, [x for x in tf.contrib.framework.get_variables() if x.name.split(':')[0] in vars_in_new_ckpt])
else:
new_ckpt_init_fn = tf.contrib.framework.assign_from_checkpoint_fn(config.ckpt_path, tf.contrib.framework.get_variables_to_restore(exclude=['global_step']))
var_init = tf.variables_initializer([global_step_tensor])
# get seen weights and initialize new layer with mean of them
sess1 = tf.Session()
new_ckpt_init_fn(sess1)
fc8_seen_weights_value = sess1.run(fc8_seen_weights)[0]
fc8_seen_biases_value = sess1.run(fc8_seen_biases)[0]
fc8_seen_weights_mean = fc8_seen_weights_value.mean(axis=3)
fc8_seen_biases_mean = fc8_seen_biases_value.mean(axis=0)
fc8_seen_weights_init = np.repeat(fc8_seen_weights_mean, n_unseen, axis=2)
fc8_seen_biases_init = np.repeat(fc8_seen_biases_mean, n_unseen)
logits = tf.squeeze(logits)
# Add a new head
if config.unseen_w_init == 'seen_centered':
# Initialize by a gaussian centered on the seen class weights
mean_seen_wt = tf.reduce_mean(tf.squeeze(fc8_seen_weights), axis=1, keep_dims=True)
std_seen_wt = tf.sqrt(tf.reduce_mean(tf.square(tf.squeeze(fc8_seen_weights) - mean_seen_wt), axis=1))
mean_wt = tf.tile(mean_seen_wt, [1, n_unseen])
std_wt = tf.tile(tf.expand_dims(std_seen_wt, axis=1), [1, n_unseen])
w_init = tf.random_normal_initializer(mean_wt, std_wt)
logits_unseen = slim.conv2d(endpoints['global_pool'], n_unseen, [1,1], activation_fn = None, normalizer_fn = None, scope='logits_unseen', weights_initializer = w_init)
else:
logits_unseen = slim.conv2d(endpoints['global_pool'], n_unseen, [1,1], activation_fn = None, normalizer_fn = None, scope='logits_unseen', weights_initializer = tf.constant_initializer(fc8_seen_weights_init))
logits_seen = slim.conv2d(endpoints['global_pool'], n_seen, [1,1], activation_fn = None, normalizer_fn = None, scope='logits_seen', weights_initializer = tf.constant_initializer(fc8_seen_weights_value))
logits = array_ops.squeeze(logits_seen, [1,2])
logits_unseen = array_ops.squeeze(logits_unseen, [1,2])
else:
var_to_restore = tf.contrib.framework.get_variables_to_restore(exclude=['global_step'])
print("Using base model checkpoint from: ", config.ckpt_path)
init_fn = tf.contrib.framework.assign_from_checkpoint_fn(config.ckpt_path, var_to_restore)
if config.unseen_w_init == 'seen_centered':
print("Seen centered initializaton of unseen weights")
# Initialize by a gaussian centered on the seen class weights
mean_seen_wt = tf.reduce_mean(tf.squeeze(fc8_seen_weights), axis=1, keep_dims=True)
std_seen_wt = tf.sqrt(tf.reduce_mean(tf.square(tf.squeeze(fc8_seen_weights) - mean_seen_wt), axis=1))
mean_wt = tf.tile(mean_seen_wt, [1, n_unseen])
std_wt = tf.tile(tf.expand_dims(std_seen_wt, axis=1), [1, n_unseen])
w_init = tf.random_normal_initializer(mean_wt, std_wt)
logits_unseen = array_ops.squeeze(tf.contrib.layers.fully_connected(inputs=endpoints['vgg_16/fc7'], num_outputs=n_unseen, activation_fn=None, weights_initializer = w_init), [1,2], name = 'fc8_unseen')
else:
logits_unseen = array_ops.squeeze(tf.contrib.layers.fully_connected(inputs=endpoints['vgg_16/fc7'], num_outputs=n_unseen, activation_fn=None), [1,2], name = 'fc8_unseen')
# Evaluation Metrics for seen classes
prediction_seen = tf.to_int32(tf.argmax(logits, -1))
prediction_seen = tf.squeeze(prediction_seen )
imclass = tf.squeeze(imclass)
correct_prediction_seen = tf.equal(prediction_seen , imclass)
accuracy_seen = tf.reduce_mean(tf.cast(correct_prediction_seen , tf.float32))
logits_seen_unseen = tf.concat([logits, logits_unseen],1)
sys.stdout.flush()
# Evaluation Metrics
prediction = tf.to_int32(tf.argmax(logits_unseen, -1))
prediction = tf.squeeze(prediction)
imclass = tf.squeeze(imclass)
correct_prediction = tf.equal(prediction, imclass)
accuracy_unseen = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
# Generalized ZSL performance
prediction_seen_unseen = tf.to_int32(tf.argmax(logits_seen_unseen,-1))
correct_prediction_seen_unseen = tf.equal(prediction_seen_unseen, imclass)
accuracy_seen_unseen = tf.reduce_mean(tf.cast(correct_prediction_seen_unseen, tf.float32))
# ----------------------------------Optimization starts here---------------------------------------
# Define one-hot for seen class
one_hot_seen = tf.one_hot(imclass, n_seen, 1.0)
signal_seen = tf.multiply(logits, one_hot_seen)
# Define how to get alphas
layer_name = config.model_name + '/' + config.layer_name
grads_seen = tf.gradients(signal_seen, endpoints[layer_name])
# Get alphas
alphas_seen = tf.reduce_sum(grads_seen[0], [1,2])
# Define one-hot for unseen class
one_hot_unseen = tf.one_hot(imclass, n_unseen, 1.0)
signal_unseen = tf.multiply(logits_unseen, one_hot_unseen)
# Define how to get alphas
layer_name = config.model_name + '/' + config.layer_name
grads_unseen = tf.gradients(signal_unseen, endpoints[layer_name])[0]
# Get alphas
alphas_unseen = tf.reduce_sum(grads_unseen, [1,2])
# Regularization coefficient
lambda_loss = float(config.reg_lambda)
attr_alpha_normalized = tf.nn.l2_normalize(attralpha, 1)
alphas_unseen_normalized = tf.nn.l2_normalize(alphas_unseen, 1)
# Cosine distance loss, assumes that both inputs are normalized
def binary_activation(x):
cond = tf.less(x, tf.zeros(tf.shape(x)))
out = tf.where(cond, tf.zeros(tf.shape(x)), tf.ones(tf.shape(x)))
return out
# Loss between network alphas and the predicted importances from domain expert --> alpha model
if config.alpha_loss_type =="cd":
zsl_alpha_loss = tf.reduce_mean(tf.losses.cosine_distance(attr_alpha_normalized, alphas_unseen_normalized, dim=1, reduction=tf.losses.Reduction.NONE))
# Define the optimizers
if config.optimizer =='adam':
optimizer = tf.train.AdamOptimizer(float(config.learning_rate))
if config.optimizer =='sgd':
optimizer = tf.train.GradientDescentOptimizer(float(config.learning_rate))
if config.optimizer =='sgd_momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate = float(config.learning_rate) , momentum = 0.9)
# get the newly initialized vars (for the unseen head)
if config.base_model =='resnet':
new_var = [v for v in tf.trainable_variables() if v.name == 'logits_unseen/weights:0' or v.name =='logits_unseen/biases:0' or v.name == 'logits_seen/weights:0' or v.name =='logits_seen/biases:0']
else:
new_var = [v for v in tf.trainable_variables() if v.name == 'fully_connected/weights:0' or v.name =='fully_connected/biases:0']#tf.contrib.framework.get_variables('logits_unseen')
# Regularizer term
if config.reg_loss == 'dimn_wise_l2':
zsl_reg_loss = tf.nn.l2_loss(tf.squeeze(new_var[0]) - tf.expand_dims(tf.reduce_mean(tf.squeeze(fc8_seen_weights), axis=1), axis=1))
# Total loss is sum of loss and lambda times reg term
zsl_loss = zsl_alpha_loss + lambda_loss * zsl_reg_loss
weights_unseen_grad = tf.gradients(alphas_unseen, new_var[0])[0]
# define training op with the parameters to be optimized (unseen head params and global step)
new_train_op = tf.contrib.slim.learning.create_train_op(zsl_loss, optimizer, variables_to_train=new_var)
new_vars_with_adam = new_var + [x for x in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if 'beta' in x.name or 'Adam' in x.name or 'global_step' in x.name]
new_vars_with_adam_momentum = new_var + [x for x in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if 'Momentum' in x.name ]
# Define the global step to be some tf.Variable
global_step_tensor = tf.Variable(0, trainable=False, name='global_step', dtype=tf.int32)
new_init = tf.variables_initializer(new_vars_with_adam + new_vars_with_adam_momentum + [global_step_tensor])
print("Graph finalized")
# save accuracies as trainig proceeds
seen_seen_head_ls, unseen_unseen_head_ls, seen_seen_unseen_head_ls, seen_unseen_seen_unseen_head_ls, unseen_seen_unseen_head_ls, hm_ls = [],[],[],[],[], []
vLoss = []
print("Running simple forward pass for getting initial performance ..")
with tf.Session(graph=graph) as sess:
if config.base_model=='resnet':
if config.ckpt=='old':
new_ckpt_init_fn(sess)
old_ckpt_init_fn(sess)
else:
new_ckpt_init_fn(sess)
sess.run(var_init)
else:
init_fn(sess)
sess.run(new_init)
val_loss_best = 1e20
iteration = 1
# Calculate seen head accuracy on the test set
seen_seen_head = check_accuracy_normalized(sess, prediction_seen,imclass, accuracy_seen, is_training, train_seen_init_op, verbose=False)
print("seen head test accuracy (argmax {}): {}".format(config.n_seen, seen_seen_head))
test_accuracy = check_accuracy_normalized(sess, prediction_seen_unseen,imclass, accuracy_seen_unseen, is_training, test_init_op, verbose=False)
print("Normalized Initial seen + unseen head full test accuracy: {}".format(test_accuracy))
# Define criterion for early stopping (loss doesn't improve by 1% in 40 iterations)
zsl_loss_monitor = 1e20
zsl_loss_ctr = 1
zsl_loss_window = int(config.zsl_loss_estop_window)
# Start training
print("Starting Optimization .....")
epoch_flag = False
for epoch in range(1, int(config.num_epochs)):
if epoch_flag:
break
m = 0
sys.stdout.flush()
sess.run(train_init_op)
loss_list = []
loss_alpha_list = []
loss_reg_list = []
while True:
try:
l, zsl_alpha, zsl_reg, zsl_total = sess.run([new_train_op, zsl_alpha_loss, zsl_reg_loss, zsl_loss], {is_training:False})
if zsl_loss_ctr >= zsl_loss_window:
epoch_flag = True
print('Breaking out of optimization split\n\n')
break
if iteration == 1:
zsl_loss_monitor = zsl_total
else:
if (1 - (zsl_total/zsl_loss_monitor)) > float(config.eps_perc):
zsl_loss_ctr = 0
zsl_loss_monitor = zsl_total
else:
zsl_loss_ctr += 1
loss_list.append(l)
loss_alpha_list.append(zsl_alpha)
loss_reg_list.append(zsl_reg)
iteration +=1
except tf.errors.OutOfRangeError:
break
valLoss = np.mean(np.array(loss_list))
print("Epoch {}, average_training_loss_alpha: {}".format(epoch, np.mean(np.array(loss_alpha_list))))
print("Epoch {}, average_training_loss_reg : {}".format(epoch, np.mean(np.array(loss_reg_list))))
print("Epoch {}, average_training_loss: {}".format(epoch, valLoss))
# Compute accuracy
seen_seen_head_ls.append(seen_seen_head)
unseen_unseen_head = check_accuracy_normalized(sess, prediction,imclass, accuracy_unseen, is_training, val_init_op)
print("unseen head test accuracy (argmax {}): {}".format(config.n_unseen, unseen_unseen_head))
unseen_unseen_head_ls.append(unseen_unseen_head)
seen_seen_unseen_head = check_accuracy_normalized(sess, prediction_seen_unseen, imclass, accuracy_seen_unseen, is_training, test_seen_init_op)
print("seen head full test accuracy: (argmax {}): {}".format(config.n_class, seen_seen_unseen_head))
seen_seen_unseen_head_ls.append(seen_seen_unseen_head)
seen_unseen_seen_unseen_head = check_accuracy_normalized(sess, prediction_seen_unseen, imclass, accuracy_seen_unseen, is_training, test_init_op)
print("seen + unseen head full test accuracy: (argmax {}): {}".format(config.n_class, seen_unseen_seen_unseen_head))
seen_unseen_seen_unseen_head_ls.append(seen_unseen_seen_unseen_head)
unseen_seen_unseen_head = check_accuracy_normalized(sess, prediction_seen_unseen, imclass, accuracy_seen_unseen, is_training, test_unseen_init_op, verbose=False)
print("unseen head full test accuracy: (argmax {}): {}".format(config.n_class, unseen_seen_unseen_head))