forked from Sanster/keras_textboxes_plusplus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
287 lines (230 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from keras.optimizers import Adam, SGD
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TerminateOnNaN, CSVLogger
from keras import backend as K
from keras.models import load_model
from math import ceil
import numpy as np
from matplotlib import pyplot as plt
from models.keras_ssd300 import ssd_300
from keras_loss_function.keras_ssd_loss import SSDLoss
from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes
from keras_layers.keras_layer_DecodeDetections import DecodeDetections
from keras_layers.keras_layer_DecodeDetectionsFast import DecodeDetectionsFast
from keras_layers.keras_layer_L2Normalization import L2Normalization
from ssd_encoder_decoder.ssd_input_encoder import SSDInputEncoder
from ssd_encoder_decoder.ssd_output_decoder import decode_detections, decode_detections_fast
from data_generator.object_detection_2d_data_generator import DataGenerator
from data_generator.object_detection_2d_geometric_ops import Resize
from data_generator.object_detection_2d_photometric_ops import ConvertTo3Channels
from data_generator.data_augmentation_chain_original_ssd import SSDDataAugmentation
from data_generator.object_detection_2d_misc_utils import apply_inverse_transforms
img_height = 300 # Height of the model input images
img_width = 300 # Width of the model input images
img_channels = 3 # Number of color channels of the model input images
mean_color = [123, 117,
104] # The per-channel mean of the images in the dataset. Do not change this value if you're using any of the pre-trained weights.
swap_channels = [2, 1,
0] # The color channel order in the original SSD is BGR, so we'll have the model reverse the color channel order of the input images.
n_classes = 20 # Number of positive classes, e.g. 20 for Pascal VOC, 80 for MS COCO
scales_pascal = [0.1, 0.2, 0.37, 0.54, 0.71, 0.88,
1.05] # The anchor box scaling factors used in the original SSD300 for the Pascal VOC datasets
scales_coco = [0.07, 0.15, 0.33, 0.51, 0.69, 0.87,
1.05] # The anchor box scaling factors used in the original SSD300 for the MS COCO datasets
scales = scales_pascal
aspect_ratios = [[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5, 3.0, 1.0 / 3.0],
[1.0, 2.0, 0.5, 3.0, 1.0 / 3.0],
[1.0, 2.0, 0.5, 3.0, 1.0 / 3.0],
[1.0, 2.0, 0.5],
[1.0, 2.0, 0.5]] # The anchor box aspect ratios used in the original SSD300; the order matters
two_boxes_for_ar1 = True
steps = [8, 16, 32, 64, 100, 300] # The space between two adjacent anchor box center points for each predictor layer.
offsets = [0.5, 0.5, 0.5, 0.5, 0.5,
0.5] # The offsets of the first anchor box center points from the top and left borders of the image as a fraction of the step size for each predictor layer.
clip_boxes = False # Whether or not to clip the anchor boxes to lie entirely within the image boundaries
variances = [0.1, 0.1, 0.2,
0.2] # The variances by which the encoded target coordinates are divided as in the original implementation
normalize_coords = True
# 1: Build the Keras model.
K.clear_session() # Clear previous models from memory.
model = ssd_300(image_size=(img_height, img_width, img_channels),
n_classes=n_classes,
mode='training',
l2_regularization=0.0005,
scales=scales,
aspect_ratios_per_layer=aspect_ratios,
two_boxes_for_ar1=two_boxes_for_ar1,
steps=steps,
offsets=offsets,
clip_boxes=clip_boxes,
variances=variances,
normalize_coords=normalize_coords,
subtract_mean=mean_color,
swap_channels=swap_channels)
# 2: Load some weights into the model.
# TODO: Set the path to the weights you want to load.
weights_path = 'path/to/VGG_ILSVRC_16_layers_fc_reduced.h5'
model.load_weights(weights_path, by_name=True)
# 3: Instantiate an optimizer and the SSD loss function and compile the model.
# If you want to follow the original Caffe implementation, use the preset SGD
# optimizer, otherwise I'd recommend the commented-out Adam optimizer.
# adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
sgd = SGD(lr=0.001, momentum=0.9, decay=0.0, nesterov=False)
ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0)
model.compile(optimizer=sgd, loss=ssd_loss.compute_loss)
# 1: Instantiate two `DataGenerator` objects: One for training, one for validation.
# Optional: If you have enough memory, consider loading the images into memory for the reasons explained above.
train_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None)
val_dataset = DataGenerator(load_images_into_memory=False, hdf5_dataset_path=None)
# 2: Parse the image and label lists for the training and validation datasets. This can take a while.
# TODO: Set the paths to the datasets here.
# The directories that contain the images.
VOC_2007_images_dir = '../../datasets/VOCdevkit/VOC2007/JPEGImages/'
VOC_2012_images_dir = '../../datasets/VOCdevkit/VOC2012/JPEGImages/'
# The directories that contain the annotations.
VOC_2007_annotations_dir = '../../datasets/VOCdevkit/VOC2007/Annotations/'
VOC_2012_annotations_dir = '../../datasets/VOCdevkit/VOC2012/Annotations/'
# The paths to the image sets.
VOC_2007_train_image_set_filename = '../../datasets/VOCdevkit/VOC2007/ImageSets/Main/train.txt'
VOC_2012_train_image_set_filename = '../../datasets/VOCdevkit/VOC2012/ImageSets/Main/train.txt'
VOC_2007_val_image_set_filename = '../../datasets/VOCdevkit/VOC2007/ImageSets/Main/val.txt'
VOC_2012_val_image_set_filename = '../../datasets/VOCdevkit/VOC2012/ImageSets/Main/val.txt'
VOC_2007_trainval_image_set_filename = '../../datasets/VOCdevkit/VOC2007/ImageSets/Main/trainval.txt'
VOC_2012_trainval_image_set_filename = '../../datasets/VOCdevkit/VOC2012/ImageSets/Main/trainval.txt'
VOC_2007_test_image_set_filename = '../../datasets/VOCdevkit/VOC2007/ImageSets/Main/test.txt'
# The XML parser needs to now what object class names to look for and in which order to map them to integers.
classes = ['background',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat',
'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor']
train_dataset.parse_xml(images_dirs=[VOC_2007_images_dir,
VOC_2012_images_dir],
image_set_filenames=[VOC_2007_trainval_image_set_filename,
VOC_2012_trainval_image_set_filename],
annotations_dirs=[VOC_2007_annotations_dir,
VOC_2012_annotations_dir],
classes=classes,
include_classes='all',
exclude_truncated=False,
exclude_difficult=False,
ret=False)
val_dataset.parse_xml(images_dirs=[VOC_2007_images_dir],
image_set_filenames=[VOC_2007_test_image_set_filename],
annotations_dirs=[VOC_2007_annotations_dir],
classes=classes,
include_classes='all',
exclude_truncated=False,
exclude_difficult=True,
ret=False)
# Optional: Convert the dataset into an HDF5 dataset. This will require more disk space, but will
# speed up the training. Doing this is not relevant in case you activated the `load_images_into_memory`
# option in the constructor, because in that cas the images are in memory already anyway. If you don't
# want to create HDF5 datasets, comment out the subsequent two function calls.
train_dataset.create_hdf5_dataset(file_path='dataset_pascal_voc_07+12_trainval.h5',
resize=False,
variable_image_size=True,
verbose=True)
val_dataset.create_hdf5_dataset(file_path='dataset_pascal_voc_07_test.h5',
resize=False,
variable_image_size=True,
verbose=True)
# 3: Set the batch size.
batch_size = 32 # Change the batch size if you like, or if you run into GPU memory issues.
# 4: Set the image transformations for pre-processing and data augmentation options.
# For the training generator:
ssd_data_augmentation = SSDDataAugmentation(img_height=img_height,
img_width=img_width,
background=mean_color)
# For the validation generator:
convert_to_3_channels = ConvertTo3Channels()
resize = Resize(height=img_height, width=img_width)
# 5: Instantiate an encoder that can encode ground truth labels into the format needed by the SSD loss function.
# The encoder constructor needs the spatial dimensions of the model's predictor layers to create the anchor boxes.
predictor_sizes = [model.get_layer('conv4_3_norm_mbox_conf').output_shape[1:3],
model.get_layer('fc7_mbox_conf').output_shape[1:3],
model.get_layer('conv6_2_mbox_conf').output_shape[1:3],
model.get_layer('conv7_2_mbox_conf').output_shape[1:3],
model.get_layer('conv8_2_mbox_conf').output_shape[1:3],
model.get_layer('conv9_2_mbox_conf').output_shape[1:3]]
ssd_input_encoder = SSDInputEncoder(img_height=img_height,
img_width=img_width,
n_classes=n_classes,
predictor_sizes=predictor_sizes,
scales=scales,
aspect_ratios_per_layer=aspect_ratios,
two_boxes_for_ar1=two_boxes_for_ar1,
steps=steps,
offsets=offsets,
clip_boxes=clip_boxes,
variances=variances,
matching_type='multi',
pos_iou_threshold=0.5,
neg_iou_limit=0.5,
normalize_coords=normalize_coords)
# 6: Create the generator handles that will be passed to Keras' `fit_generator()` function.
train_generator = train_dataset.generate(batch_size=batch_size,
shuffle=True,
transformations=[ssd_data_augmentation],
label_encoder=ssd_input_encoder,
returns={'processed_images',
'encoded_labels'},
keep_images_without_gt=False)
val_generator = val_dataset.generate(batch_size=batch_size,
shuffle=False,
transformations=[convert_to_3_channels,
resize],
label_encoder=ssd_input_encoder,
returns={'processed_images',
'encoded_labels'},
keep_images_without_gt=False)
# Get the number of samples in the training and validations datasets.
train_dataset_size = train_dataset.get_dataset_size()
val_dataset_size = val_dataset.get_dataset_size()
print("Number of images in the training dataset:\t{:>6}".format(train_dataset_size))
print("Number of images in the validation dataset:\t{:>6}".format(val_dataset_size))
# Define a learning rate schedule.
def lr_schedule(epoch):
if epoch < 80:
return 0.001
elif epoch < 100:
return 0.0001
else:
return 0.00001
# Define model callbacks.
# TODO: Set the filepath under which you want to save the model.
model_checkpoint = ModelCheckpoint(
filepath='ssd300_pascal_07+12_epoch-{epoch:02d}_loss-{loss:.4f}_val_loss-{val_loss:.4f}.h5',
monitor='val_loss',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='auto',
period=1)
# model_checkpoint.best =
csv_logger = CSVLogger(filename='ssd300_pascal_07+12_training_log.csv',
separator=',',
append=True)
learning_rate_scheduler = LearningRateScheduler(schedule=lr_schedule,
verbose=1)
terminate_on_nan = TerminateOnNaN()
callbacks = [model_checkpoint,
csv_logger,
learning_rate_scheduler,
terminate_on_nan]
# If you're resuming a previous training, set `initial_epoch` and `final_epoch` accordingly.
initial_epoch = 0
final_epoch = 120
steps_per_epoch = 1000
history = model.fit_generator(generator=train_generator,
steps_per_epoch=steps_per_epoch,
epochs=final_epoch,
callbacks=callbacks,
validation_data=val_generator,
validation_steps=ceil(val_dataset_size / batch_size),
initial_epoch=initial_epoch)
def main():
pass
if __name__ == "__main__":
main()