Skip to content

Latest commit

 

History

History
39 lines (33 loc) · 2.24 KB

README.md

File metadata and controls

39 lines (33 loc) · 2.24 KB

DeepErase

  • DeepErase is a U-net-like tensorflow sementic segmenation model removing artifacts (lines, boxes, spurious words) from text images extracted from documents. The cleansing of the artifacts enhances OCR performance over the image extractions.

Authors

Abstract

  • We present a method to programmatically generate artificial text images with realistic-looking artifacts, and use them to train the U-net-like model in a totally unsupervised manner.
  • The U-net-like model was trained in two modes:

Result

  • Both validation pixel level segmentation accuracies were above 95%.
  • Downstream recognition performances were evaluated on validation images and IRS extractions. The IRS extractions were extracted from NIST sd02 tax forms, and were not used in model training. The word recognition accuracy were improved and beat the naive Hough cv2 cleaning method.

Requirements

  • python 3.5 or above
  • tensorflow 1.12.0
  • torch 0.4.1
  • cv2 4.0.0

or simply

  • docker pull wrhuang/default
  • or docker pull jdegange/default
  • with minor further pip install