-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrepartition.py
60 lines (46 loc) · 3.76 KB
/
repartition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from repartition_utilities import *
def main():
# Starting repartitioning of NYC taxi trip multivariate data with infoloss threshold 0.05
taxi_trip_mulivariate_data_types = [DATA_TYPE_INT, DATA_TYPE_INT, DATA_TYPE_FLOAT_DOUBLE, DATA_TYPE_FLOAT_DOUBLE]
infoLossThreshold_taxi_trip_multi = 0.05
outputPath_taxi_trip_multi = "data/repartitioned_data/taxi_trip_multivariate_data"
file_taxi_trip_multivariate = open("data/processed_data/taxi_trip_multivariate_data/taxi_trip_multivariate_grid.npy", "rb")
taxi_trip_multivariate_grid = np.load(file_taxi_trip_multivariate)
doRepartitioningmultiAttr(taxi_trip_multivariate_grid, taxi_trip_mulivariate_data_types, infoLossThreshold_taxi_trip_multi, outputPath_taxi_trip_multi)
# Starting repartitioning of NYC taxi trip univariate data with infoloss threshold 0.05
taxi_trip_univariate_data_type = [DATA_TYPE_INT]
infoLossThreshold_taxi_trip_uni = 0.05
outputPath_taxi_trip_uni = "data/repartitioned_data/taxi_trip_univariate_data"
file_taxi_trip_univariate = open("data/processed_data/taxi_trip_univariate_data/taxi_trip_univariate_grid.npy", "rb")
taxi_trip_univariate_grid = np.load(file_taxi_trip_univariate)
doRepartitioningmultiAttr(taxi_trip_univariate_grid, taxi_trip_univariate_data_type, infoLossThreshold_taxi_trip_uni, outputPath_taxi_trip_uni)
# Starting repartitioning of WA King county home sales multivariate data with infoloss threshold 0.05
home_sales_mulivariate_data_types = [DATA_TYPE_FLOAT_DOUBLE]*7
infoLossThreshold_home_sales_multi = 0.05
outputPath_home_salesmulti = "data/repartitioned_data/home_sales_multivariate_data"
file_home_sales_multivariate = open("data/processed_data/home_sales_multivariate_data/home_sales_multivariate_grid.npy", "rb")
home_sales_multivariate_grid = np.load(file_home_sales_multivariate)
doRepartitioningmultiAttr(home_sales_multivariate_grid, home_sales_mulivariate_data_types, infoLossThreshold_home_sales_multi, outputPath_home_sales_multi)
# Starting repartitioning of NYC taxi trip univariate data with infoloss threshold 0.05
vehicles_univariate_data_type = [DATA_TYPE_INT]
infoLossThreshold_vehicles_uni = 0.05
outputPath_vehicles_uni = "data/repartitioned_data/vehicles_univariate_data"
file_vehicles_univariate = open("data/processed_data/vehicles_univariate_data/vehicles_univariate_grid.npy", "rb")
vehicles_univariate_grid = np.load(file_vehicles_univariate)
doRepartitioningmultiAttr(vehicles_univariate_grid, vehicles_univariate_data_type, infoLossThreshold_vehicles_uni, outputPath_vehicles_uni)
# Starting repartitioning of NYC earning multivariate data with infoloss threshold 0.05
earning_mulivariate_data_types = [DATA_TYPE_FLOAT_DOUBLE, DATA_TYPE_FLOAT_DOUBLE, DATA_TYPE_FLOAT_DOUBLE, DATA_TYPE_FLOAT_DOUBLE, DATA_TYPE_FLOAT_DOUBLE]
infoLossThreshold_earning_multi = 0.05
outputPath_earning_multi = "data/repartitioned_data/earning_multivariate_data"
file_earning_multivariate = open("data/processed_data/earning_multivariate_data/earning_multivariate_grid.npy", "rb")
earning_multivariate_grid = np.load(file_earning_multivariate)
doRepartitioningmultiAttr(earning_multivariate_grid, earning_mulivariate_data_types, infoLossThreshold_earning_multi, outputPath_earning_multi)
# Starting repartitioning of NYC earning univariate data with infoloss threshold 0.05
earning_univariate_data_types = [DATA_TYPE_FLOAT_DOUBLE]
infoLossThreshold_earning_uni = 0.05
outputPath_earning_uni = "data/repartitioned_data/earning_univariate_data"
file_earning_univariate = open("data/processed_data/earning_univariate_data/earning_univariate_grid.npy", "rb")
earning_univariate_grid = np.load(file_earning_univariate)
doRepartitioningmultiAttr(earning_univariate_grid, earning_univariate_data_types, infoLossThreshold_earning_uni, outputPath_earning_uni)
if __name__ == "__main__":
main()