forked from bingmann/pDCX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkamping_dc.cpp
1874 lines (1420 loc) · 59.2 KB
/
kamping_dc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
*
* pDCX
*
* MPI-distributed and parallel suffix sorter using difference cover.
*
* Written by Timo Bingmann in 2012 loosely based on the previous work
* by Fabian Kulla in 2006.
* Changed to using KaMPIng MPI-bindings by Florian Kurpicz in 2024.
*
*/
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <mpi.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits>
#include <sstream>
#include <vector>
//#include <proc/readproc.h>
#include "sachecker.h"
#include "yuta-sais-lite.h"
#include "common.h"
// KaMPIng includes
#include <kamping/collectives/allgather.hpp>
#include <kamping/collectives/allreduce.hpp>
#include <kamping/collectives/alltoall.hpp>
#include <kamping/collectives/barrier.hpp>
#include <kamping/collectives/bcast.hpp>
#include <kamping/collectives/gather.hpp>
#include <kamping/collectives/scan.hpp>
#include <kamping/communicator.hpp>
#include <kamping/environment.hpp>
#include <kamping/p2p/recv.hpp>
#include <kamping/p2p/send.hpp>
template <typename DCParam, typename alphabet_type>
class pDCX {
public:
typedef unsigned int uint;
// **********************************************************************
// * global parameters
static const unsigned int X = DCParam::X;
static const unsigned int D = DCParam::D;
// static const unsigned int DCH[X] = { 3, 6, 6, 5, 6, 5, 4 }; // additional
// chars in tuple static const unsigned int DCD[X] = { 0, 0, 1, 0, 3, 2, 1 };
// // depth to sort chars before using first rank
// static const unsigned int inDC[X] = { 1, 1, 0, 1, 0, 0, 0 };
static const bool debug = false;
static const bool debug_input = false;
static const bool debug_rebalance = false;
static const bool debug_sortsample = false;
static const bool debug_nameing = false;
static const bool debug_recursion = false;
static const bool debug_rec_selfcheck = false;
static const bool debug_finalsort = false;
static const bool debug_compare = false;
static const bool debug_checker1 = false;
static const bool debug_checker2 = false;
static const bool debug_output = false;
// **********************************************************************
// * tuple types
class Pair {
public:
uint index;
uint name;
unsigned char unique;
bool operator<(const Pair& a) const { return (index < a.index); }
static inline bool cmpName(const Pair& a, const Pair& b) {
return (a.name < b.name);
}
static inline bool cmpIndexModDiv(const Pair& a, const Pair& b) {
return (a.index % X < b.index % X) ||
((a.index % X == b.index % X) && (a.index / X < b.index / X));
}
friend std::ostream& operator<<(std::ostream& os, const Pair& p) {
return (os << "(" << p.index << "," << p.name << "," << int(p.unique)
<< ")");
}
};
class Triple {
public:
uint rank1;
uint rank2;
alphabet_type char1;
bool operator<(const Triple& a) const { return (rank1 < a.rank1); }
friend std::ostream& operator<<(std::ostream& os, const Triple& p) {
return (os << "(" << p.rank1 << "," << p.rank2 << "," << strC(p.char1)
<< ")");
}
};
class TupleS {
public:
alphabet_type chars[X];
uint index;
bool operator<(const TupleS& o) const {
for (unsigned int i = 0; i < X; ++i) {
if (chars[i] == o.chars[i]) continue;
return chars[i] < o.chars[i];
}
return (index < o.index);
}
static inline bool cmpIndex(const TupleS& a, const TupleS& b) {
return (a.index < b.index);
}
bool operator==(const TupleS& o) const {
for (unsigned int i = 0; i < X; ++i) {
if (chars[i] != o.chars[i]) return false;
}
return true;
}
friend std::ostream& operator<<(std::ostream& os, const TupleS& t) {
os << "([";
for (unsigned int i = 0; i < X; ++i) {
if (i != 0) os << " ";
os << strC(t.chars[i]);
}
os << "]," << t.index << ")";
return os;
}
};
struct TupleN {
alphabet_type chars[X - 1];
uint ranks[D];
uint index;
bool operator<(const TupleN& a) const {
return cmpTupleNdepth<X - 1>(*this, a);
}
bool operator==(const TupleN& o) const {
for (unsigned int i = 0; i < X - 1; ++i) {
if (chars[i] != o.chars[i]) return false;
}
for (unsigned int i = 0; i < D; ++i) {
if (ranks[i] != o.ranks[i]) return false;
}
if (index != o.index) return false;
return true;
}
bool operator!=(const TupleN& o) const { return !(*this == o); }
friend std::ostream& operator<<(std::ostream& os, const TupleN& t) {
os << "(c[";
for (unsigned int i = 0; i < X - 1; ++i) {
if (i != 0) os << " ";
os << strC(t.chars[i]);
}
os << "],r[";
for (unsigned int i = 0; i < D; ++i) {
if (i != 0) os << " ";
os << t.ranks[i];
}
os << "]," << t.index << ")";
return os;
}
};
template <int Depth>
static inline bool cmpTupleNdepth(const TupleN& a, const TupleN& b) {
for (unsigned int d = 0; d < Depth; ++d) {
if (a.chars[d] == b.chars[d]) continue;
return (a.chars[d] < b.chars[d]);
}
// ranks must always differ, however for some reason a == b is possible.
assert(a.ranks[0] != b.ranks[0] || a.index == b.index);
return (a.ranks[0] < b.ranks[0]);
}
static inline bool cmpTupleNranks(const TupleN& a, const TupleN& b) {
// ranks must always differ, however for some reason a == b is possible.
assert(a.ranks[0] != b.ranks[0] || a.index == b.index);
return (a.ranks[0] < b.ranks[0]);
}
template <int MaxDepth, typename Tuple>
static inline void radixsort_CI(Tuple* array, uint n, size_t depth,
size_t K) {
if (n < 32) {
std::sort(array, array + n);
return;
}
if (depth == MaxDepth) {
// still have to finish sort of first rank as tie breaker
std::sort(array, array + n, TupleS::cmpIndex);
return;
}
size_t bucketsize[K];
memset(bucketsize, 0, K * sizeof(size_t));
alphabet_type* oracle = (alphabet_type*)malloc(n * sizeof(alphabet_type));
for (size_t i = 0; i < n; ++i) oracle[i] = array[i].chars[depth];
for (size_t i = 0; i < n; ++i) {
assert(oracle[i] < K);
++bucketsize[oracle[i]];
}
ssize_t bucketindex[K];
bucketindex[0] = bucketsize[0];
size_t last_bucket_size = bucketsize[0];
for (unsigned i = 1; i < K; ++i) {
bucketindex[i] = bucketindex[i - 1] + bucketsize[i];
if (bucketsize[i]) last_bucket_size = bucketsize[i];
}
for (size_t i = 0, j; i < n - last_bucket_size;) {
while ((j = --bucketindex[oracle[i]]) > i) {
std::swap(array[i], array[j]);
std::swap(oracle[i], oracle[j]);
}
i += bucketsize[oracle[i]];
}
free(oracle);
size_t bsum = 0;
for (size_t i = 0; i < K; bsum += bucketsize[i++]) {
if (bucketsize[i] <= 1) continue;
radixsort_CI<MaxDepth>(array + bsum, bucketsize[i], depth + 1, K);
}
}
template <int MaxDepth, typename Tuple>
static inline void radixsort_CI2(Tuple* array, uint n, size_t depth,
size_t K) {
if (n < 32) {
std::sort(array, array + n);
return;
}
if (depth == MaxDepth) {
// still have to finish sort of first rank as tie breaker
std::sort(array, array + n, cmpTupleNranks);
return;
}
size_t bucketsize[K];
memset(bucketsize, 0, K * sizeof(size_t));
alphabet_type* oracle = (alphabet_type*)malloc(n * sizeof(alphabet_type));
for (size_t i = 0; i < n; ++i) oracle[i] = array[i].chars[depth];
for (size_t i = 0; i < n; ++i) {
assert(oracle[i] < K);
++bucketsize[oracle[i]];
}
ssize_t bucketindex[K];
bucketindex[0] = bucketsize[0];
size_t last_bucket_size = bucketsize[0];
for (unsigned i = 1; i < K; ++i) {
bucketindex[i] = bucketindex[i - 1] + bucketsize[i];
if (bucketsize[i]) last_bucket_size = bucketsize[i];
}
for (size_t i = 0, j; i < n - last_bucket_size;) {
while ((j = --bucketindex[oracle[i]]) > i) {
std::swap(array[i], array[j]);
std::swap(oracle[i], oracle[j]);
}
i += bucketsize[oracle[i]];
}
free(oracle);
size_t bsum = 0;
for (size_t i = 0; i < K; bsum += bucketsize[i++]) {
if (bucketsize[i] <= 1) continue;
radixsort_CI2<MaxDepth>(array + bsum, bucketsize[i], depth + 1, K);
}
}
// **********************************************************************
// *** MPI variables
kamping::Communicator<> comm;
static const unsigned int MSGTAG = 42; // arbitrary number
int samplefactor;
pDCX() : comm(kamping::Communicator<>()) {
samplefactor = comm.size(); // TODO
}
~pDCX() {}
template <typename Type>
void gather_vector(
const std::vector<Type>& v, std::vector<Type>& out,
unsigned int removelap = 0,
kamping::Communicator<>& comm = kamping::Communicator<>()) {
int size = v.size() - (comm.rank() != comm.size() - 1 ? removelap : 0);
out = comm.gatherv(kamping::send_buf(v), kamping::send_count(size));
}
// **********************************************************************
// *** MPI variables
static inline bool cmpTupleNCompare(const TupleN& t1, const TupleN& t2) {
unsigned int v1 = t1.index % X, v2 = t2.index % X;
const int* deprank = DCParam::cmpDepthRanks[v1][v2];
if (debug_compare)
std::cout << "cmp " << v1 << t1 << " ? " << v2 << t2 << " - depth "
<< deprank[0] << "\n";
for (int d = 0; d < deprank[0]; ++d) {
if (t1.chars[d] == t2.chars[d]) continue;
return (t1.chars[d] < t2.chars[d]);
}
if (debug_compare)
std::cout << "break tie using ranks " << deprank[1] << " - " << deprank[2]
<< " = " << t1.ranks[deprank[1]] << " - "
<< t2.ranks[deprank[2]] << "\n";
// assert (t1.ranks[ deprank[1] ] != t2.ranks[ deprank[2] ]);
return (t1.ranks[deprank[1]] < t2.ranks[deprank[2]]);
}
struct TupleNMerge {
const std::vector<TupleN>* m_S;
std::vector<unsigned int> m_ptr;
TupleNMerge(const std::vector<TupleN>* S) : m_S(S), m_ptr(X, 0) {}
inline bool done(int v) const { return (m_ptr[v] >= m_S[v].size()); }
inline bool operator()(int v1, int v2) const {
assert(v1 < v2);
const int* deprank = DCParam::cmpDepthRanks[v1][v2];
const TupleN& t1 = m_S[v1][m_ptr[v1]];
const TupleN& t2 = m_S[v2][m_ptr[v2]];
assert(t1.index % X == (unsigned int)v1);
assert(t2.index % X == (unsigned int)v2);
if (debug_compare)
std::cout << "cmp " << v1 << "(" << t1.index << ") ? " << v2 << "("
<< t2.index << ") - depth " << deprank[0] << "\n";
for (int d = 0; d < deprank[0]; ++d) {
if (t1.chars[d] == t2.chars[d]) continue;
return (t1.chars[d] < t2.chars[d]);
}
if (debug_compare)
std::cout << "break tie using ranks " << deprank[1] << " - "
<< deprank[2] << " = " << t1.ranks[deprank[1]] << " - "
<< t2.ranks[deprank[2]] << "\n";
assert(t1.ranks[deprank[1]] != t2.ranks[deprank[2]]);
return (t1.ranks[deprank[1]] < t2.ranks[deprank[2]]);
}
};
// functions for rebalancing the input
static inline uint RangeFix(uint a, uint b, uint limit) {
if (b >= a) return 0;
return std::min<uint>(limit, a - b);
}
// functions for rebalancing the input
inline uint Extra(int i) {
return (i != comm.size_signed() - 1) ? (X - 1) : 0;
}
bool dcx(std::vector<alphabet_type>& input, uint depth, uint K) {
const unsigned int* DC = DCParam::DC;
// **********************************************************************
// * analyze input and rebalance input to localStride, which is a multiple
// of p and X.
// collect all localSizes and calc prefix sum
unsigned int localSize = input.size();
auto localSizes = comm.allgather(kamping::send_buf(localSize));
localSizes.resize(comm.size() + 1);
exclusive_prefixsum(localSizes.data(), comm.size());
DBG_ARRAY2(debug_rebalance, "localSizes", localSizes.data(),
comm.size() + 1);
// calculate localStride
const uint globalSize = localSizes[comm.size()]; // global size of input
uint localStride = (globalSize + comm.size() - 1) /
comm.size(); // divide by processors rounding up
localStride += X - localStride % X; // round up to nearest multiple of X
const unsigned int localOffset = comm.rank() * localStride;
localSize =
(comm.rank() != comm.size() - 1)
? localStride
: globalSize -
localOffset; // target localSize (without extra tuples)
const unsigned int localSizeExtra =
(comm.rank() != comm.size() - 1)
? localStride + (X - 1)
: globalSize - localOffset; // target localSize with extra tuples
const unsigned int globalMultipleOfX =
(globalSize + X - 1) / X; // rounded up number of global multiples of X
const unsigned int M =
(localSize + X - 1) /
X; // number of incomplete X chars in local area size
uint samplesize =
(uint)sqrt(localStride * D / X / comm.size()) * samplefactor;
if (samplesize >= D * (localStride / X))
samplesize = D * (localStride / X) - 1;
if (debug) {
std::cout << "******************** DCX (process " << comm.rank()
<< ") depth " << depth << " ********************" << std::endl;
std::cout << "Parameters:\n"
<< " globalSize = " << globalSize << "\n"
<< " localStride = " << localStride << "\n"
<< " localSize = " << localSize << "\n"
<< " localSizeExtra = " << localSizeExtra << "\n"
<< " globalMultipleOfX = " << globalMultipleOfX << "\n"
<< " localMultipleOfX (aka M) = " << M << "\n"
<< " samplesize = " << samplesize << "\n"
<< " K = " << K << "\n"
<< " current memusage = mem " << getmemusage() << "\n";
}
// rebalance input
{
std::vector<int> sendcnt(comm.size(), 0);
std::vector<int> sendoff(comm.size(), 0);
std::vector<int> recvcnt(comm.size(), 0);
std::vector<int> recvoff(comm.size(), 0);
for (int i = 1; i < comm.size_signed(); ++i) {
if (debug_rebalance) {
std::cout << "range sent " << comm.rank() << " -> " << i << " is "
<< RangeFix(i * localStride, localSizes[comm.rank()],
input.size())
<< " - "
<< RangeFix((i + 1) * localStride + Extra(i),
localSizes[comm.rank()], input.size())
<< "\n";
}
sendoff[i] =
RangeFix(i * localStride, localSizes[comm.rank()], input.size());
sendcnt[i - 1] = RangeFix(i * localStride + Extra(i - 1),
localSizes[comm.rank()], input.size()) -
sendoff[i - 1];
}
sendcnt[comm.size() - 1] = input.size() - sendoff[comm.size() - 1];
DBG_ARRAY2(debug_rebalance, "sendcnt", sendcnt.data(), comm.size());
DBG_ARRAY2(debug_rebalance, "sendoff", sendoff.data(), comm.size());
for (int i = 1; i < comm.size_signed(); ++i) {
if (debug_rebalance) {
std::cout << "range recv " << i << " -> " << comm.rank() << " is "
<< RangeFix(localSizes[i], comm.rank() * localStride,
localSizeExtra)
<< "\n"
<< RangeFix(localSizes[i + 1], comm.rank() * localStride,
localSizeExtra)
<< "\n";
}
recvoff[i] =
RangeFix(localSizes[i], comm.rank() * localStride, localSizeExtra);
recvcnt[i - 1] =
RangeFix(localSizes[i], comm.rank() * localStride, localSizeExtra) -
recvoff[i - 1];
}
recvcnt[comm.size() - 1] = localSizeExtra - recvoff[comm.size() - 1];
DBG_ARRAY2(debug_rebalance, "recvcnt", recvcnt.data(), comm.size());
DBG_ARRAY2(debug_rebalance, "recvoff", recvoff.data(), comm.size());
std::vector<alphabet_type> recvbuf(localSizeExtra);
input = comm.alltoallv(
kamping::send_buf(input), kamping::send_counts(sendcnt),
kamping::send_displs(sendoff), kamping::recv_counts(recvcnt),
kamping::recv_displs(recvoff));
}
DBG_ARRAY2(debug_input, "Input (without extra tuples)", input.data(),
localSize);
DBG_ARRAY2(debug_input, "Input (extra tuples)", (input.data() + localSize),
localSizeExtra - localSize);
// **********************************************************************
// * calculate build DC-tuple array and sort locally
std::vector<TupleS> R(
D * M); // create D * M tuples which might include up to D-1 dummies
uint j = 0;
for (uint i = 0; i < localSize; i += X) {
for (uint d = 0; d < D; ++d) {
R[j].index = localOffset + i + DC[d];
for (uint x = i + DC[d], y = 0; y < X; ++x, ++y)
R[j].chars[y] = (x < localSizeExtra) ? input[x] : 0;
++j;
}
}
assert(j == D * M);
std::cout << "done local sort sample suffixes - mem = " << getmemusage()
<< "\n";
std::cout << "sizeof R = " << R.size() * sizeof(R[0]) << " - "
<< R.capacity() * sizeof(R[0]) << "\n";
DBG_ARRAY(debug_sortsample, "Sample suffixes", R);
// **********************************************************************
// {{{ Sample sort of array R
{
// sort locally
if (K < 4096)
radixsort_CI<X>(R.data(), R.size(), 0, K);
else
std::sort(R.begin(), R.end());
std::cout << "done local sort sample suffixes\n";
DBG_ARRAY(debug_sortsample, "Locally sorted sample suffixes", R);
// **********************************************************************
// * select equidistance samples and redistribute sorted DC-tuples
// select samples
std::vector<TupleS> samplebuf(samplesize);
double dist = (double)R.size() / samplesize;
for (uint i = 0; i < samplesize; i++) samplebuf[i] = R[int(i * dist)];
auto samplebufall = comm.gather(kamping::send_buf(samplebuf));
vector_free(samplebuf);
// root proc sorts samples as splitters
std::vector<TupleS> splitterbuf(comm.size());
if (comm.is_root()) {
std::sort(samplebufall.begin(), samplebufall.end());
DBG_ARRAY2(debug_sortsample, "Sample splitters", samplebufall.data(),
comm.size() * samplesize);
for (int i = 0; i < comm.size_signed(); i++) // pick splitters
splitterbuf[i] = samplebufall[i * samplesize];
DBG_ARRAY2(debug_sortsample, "Selected splitters", splitterbuf,
comm.size_signed());
vector_free(samplebufall);
}
// distribute splitters
comm.bcast(kamping::send_recv_buf(splitterbuf));
// find nearest splitters in locally sorted tuple list
std::vector<uint> splitterpos(comm.size() + 1, 0);
splitterpos[0] = 0;
for (int i = 1; i < comm.size_signed(); i++) {
typename std::vector<TupleS>::const_iterator it =
std::lower_bound(R.begin(), R.end(), splitterbuf[i]);
splitterpos[i] = it - R.begin();
}
splitterpos[comm.size()] = R.size();
DBG_ARRAY2(debug_sortsample, "Splitters positions", splitterpos.data(),
comm.size() + 1);
vector_free(splitterbuf);
// boardcast number of element in each division
std::vector<int> sendcnt(comm.size());
// int* recvcnt = new int[ comm.size() ];
for (int i = 0; i < comm.size_signed(); i++) {
sendcnt[i] = splitterpos[i + 1] - splitterpos[i];
assert(sendcnt[i] >= 0);
}
vector_free(splitterpos);
std::vector<int> recvoff(comm.size() + 1);
std::vector<int> recvcnt(comm.size(), 0);
R = comm.alltoallv(kamping::send_buf(R), kamping::send_counts(sendcnt),
kamping::recv_displs_out(recvoff),
kamping::recv_counts_out(recvcnt));
recvoff[comm.size()] =
recvcnt[comm.size() - 1] + recvoff[comm.size() - 1];
vector_free(sendcnt);
vector_free(recvcnt);
merge_areas(R, recvoff.data(), comm.size());
vector_free(recvoff);
}
// }}} end Sample sort of array R
DBG_ARRAY(debug_sortsample, "Sorted sample suffixes", R);
std::cout << "done global sort sample suffixes - mem = " << getmemusage()
<< "\n";
std::cout << "myproc " << comm.rank() << " R.size() = " << R.size() << "\n";
// R contains DC-sample tuples in sorted order
// **********************************************************************
// * Lexicographical naming
std::vector<Pair> P(R.size());
uint lastname, recursion;
{
// naming with local names
unsigned int dupnames = 0;
TupleS temp; // get last tuple from previous process as basis for name
// comparison (cyclicly)
comm.isend(kamping::send_buf(R.back()),
kamping::destination(comm.rank_shifted_cyclic(1)),
kamping::tag(MSGTAG));
comm.recv(kamping::recv_buf(temp),
kamping::source(comm.rank_shifted_cyclic(-1)),
kamping::tag(MSGTAG));
uint name = 0, unique = 0;
for (uint i = 0; i < R.size(); i++) {
if (!(R[i] == temp)) {
name++;
if (debug_nameing)
std::cout << "Giving name " << name << " to " << R[i] << "\n";
temp = R[i];
unique = 1;
} else {
dupnames++;
if (i != 0) P[i - 1].unique = 0;
unique = 0;
}
P[i].name = name;
P[i].index = R[i].index;
P[i].unique = unique;
}
vector_free(
R); // Why?: because it is easier to recreate the tuples later on
std::cout << "given: dupnames " << dupnames << " names given: " << name
<< " total: " << P.size() << "\n";
DBG_ARRAY(debug_nameing, "Local Names", P);
// renaming with global names: calculate using prefix sum
uint namesglob = comm.scan_single(kamping::send_buf(name),
kamping::op(kamping::ops::plus<>()));
// update local names - and free up first D names for sentinel ranks
for (uint i = 0; i < P.size(); i++) P[i].name += (namesglob - name) + D;
DBG_ARRAY(debug_nameing, "Global Names", P);
// determine whether recursion is necessary: last proc broadcasts highest
// name
if (comm.rank() == comm.size() - 1) lastname = P.back().name;
comm.bcast(kamping::send_recv_buf(lastname),
kamping::root(comm.size() - 1));
if (1 || debug_nameing)
std::cout << "last name: " << lastname << " =? "
<< D * globalMultipleOfX + D << "\n";
recursion = (lastname != D * globalMultipleOfX + D);
if (1 || debug_nameing) std::cout << "recursion: " << recursion << "\n";
}
std::cout << "done naming - mem = " << getmemusage() << "\n";
if (recursion) {
uint namesGlobalSize =
D * globalMultipleOfX + D; // add D dummies separating mod-X areas
uint namesLocalStride =
(namesGlobalSize + comm.size() - 1) / comm.size(); // rounded up
namesLocalStride +=
X - namesLocalStride % X; // round up to nearest multiple of X
uint namesGlobalMultipleOfX =
globalMultipleOfX +
1; // account one extra X-tuple for D separation dummies
std::cout << "namesGlobalSize = " << namesGlobalSize << "\n"
<< "namesLocalStride = " << namesLocalStride << "\n";
if (comm.rank() == comm.size() - 1) {
for (unsigned int i = 0; i < D; ++i) {
Pair x;
x.index = globalMultipleOfX * X + DC[i];
x.name = D - 1 - i;
x.unique = 1;
P.push_back(x);
}
}
if (debug_recursion) {
std::vector<Pair> Pall;
gather_vector(P, Pall, 0, comm);
if (comm.is_root()) {
std::sort(Pall.begin(), Pall.end(),
Pair::cmpIndexModDiv); // sort locally
DBG_ARRAY(debug_recursion, "Pall", Pall);
}
}
if (namesGlobalSize > 2 * X * comm.size()) {
if (debug_recursion)
std::cout << "--------------------- RECURSION pDCX "
"---------------- - mem = "
<< getmemusage() << std::endl;
// **********************************************************************
// {{{ Sample sort of array P by (i mod X, i div X)
std::sort(P.begin(), P.end(), Pair::cmpIndexModDiv); // sort locally
DBG_ARRAY(debug_recursion, "Names locally sorted by cmpModDiv", P);
std::vector<uint> splitterpos(comm.size() + 1, 0);
std::vector<int> sendcnt(comm.size(), 0);
// use equidistance splitters from 0..namesGlobalSize (because indexes
// are known in advance)
splitterpos[0] = 0;
Pair ptemp;
ptemp.name = 0;
for (int i = 1; i < comm.size_signed(); i++) {
ptemp.index = i * namesLocalStride;
unsigned int x = ptemp.index;
unsigned int divM = ptemp.index / namesGlobalMultipleOfX;
ptemp.index =
DC[divM] + X * (ptemp.index - divM * namesGlobalMultipleOfX);
if (debug_recursion)
std::cout << "splitter: " << ptemp.index << " = " << x << " - "
<< divM << "\n";
typename std::vector<Pair>::const_iterator it =
std::lower_bound(P.begin(), P.end(), ptemp, Pair::cmpIndexModDiv);
splitterpos[i] = it - P.begin();
}
splitterpos[comm.size()] = P.size();
DBG_ARRAY2(debug_recursion, "Splitters positions", splitterpos,
comm.size() + 1);
for (int i = 0; i < comm.size_signed(); i++) {
sendcnt[i] = splitterpos[i + 1] - splitterpos[i];
assert(sendcnt[i] >= 0);
}
std::vector<int> recvcnt(comm.size());
std::vector<int> recvoff(comm.size() + 1);
std::vector<Pair> recvBufPair =
comm.alltoallv(kamping::send_buf(P), kamping::send_counts(sendcnt),
kamping::recv_displs_out(recvoff),
kamping::recv_counts_out(recvcnt));
recvoff[comm.size()] =
recvoff[comm.size() - 1] + recvcnt[comm.size() - 1];
vector_free(P);
// final X-1 tuples should be ignored due to recvoff areas
merge_areas(recvBufPair, recvoff.data(), comm.size(),
Pair::cmpIndexModDiv);
// TODO: merge and reduce at once
uint uniqueseq = 0;
std::vector<uint> namearray(recvBufPair.size());
for (unsigned int i = 0; i < recvBufPair.size(); ++i) {
if (i != 0) {
if (recvBufPair[i - 1].unique && recvBufPair[i].unique) uniqueseq++;
}
namearray[i] = recvBufPair[i].name;
}
DBG_ARRAY(debug_recursion, "Pairs P (globally sorted by indexModDiv)",
recvBufPair);
std::cout << "uniques in sequence: " << uniqueseq << " - "
<< recvBufPair.size() / 2 << "\n";
// }}} end Sample sort of array P
if (uniqueseq > recvBufPair.size() / 2 && 0) {
// **********************************************************************
// * recurse on compressed sequence of duplicates and uniques
// reuse name array's second half for indexes
uint* indexarray = namearray.data() + recvBufPair.size() / 2;
uint j = 0;
for (unsigned int i = 0; i < recvBufPair.size(); ++i) {
if (i != 0) {
if (recvBufPair[i - 1].unique && recvBufPair[i].unique) continue;
}
namearray[j] = recvBufPair[i].name;
unsigned int divM = i / namesGlobalMultipleOfX;
uint index = DC[divM] + X * (i - divM * namesGlobalMultipleOfX);
indexarray[j] = index;
std::cout << "dup/firstunique name: " << namearray[j] << " - index "
<< indexarray[j] << "\n";
++j;
}
uint oldNamesGlobalSize = namesGlobalSize;
namesGlobalSize = j;
namesLocalStride =
(namesGlobalSize + comm.size() - 1) / comm.size(); // rounded up
namesLocalStride +=
X - namesLocalStride % X; // round up to nearest multiple of X
assert(j < recvBufPair.size() / 2);
vector_free(recvBufPair);
pDCX<DCParam, uint> rdcx;
// rdcx.dcx( namearray.data(), namesGlobalSize - (X-1),
// namesLocalStride, depth+1, oldNamesGlobalSize+1 );
std::cout << "SAlocal: " << rdcx.localSA.size() << " - indexes " << j
<< "\n";
std::cout << "SAlocal: " << rdcx.localSA.size() << " - indexes " << j
<< "\n";
std::cout << "SAlocal: " << rdcx.localSA.size() << " - indexes " << j
<< "\n";
std::cout << "SAlocal: " << rdcx.localSA.size() << " - indexes " << j
<< "\n";
assert(0);
} else {
// recurse on full sequence of names
vector_free(recvBufPair);
DBG_ARRAY(debug_recursion, "namearray", namearray);
assert(namearray.size() == namesLocalStride ||
comm.rank() == comm.size() - 1);
pDCX<DCParam, uint> rdcx;
rdcx.dcx(namearray, depth + 1, lastname + 1);
if (debug_rec_selfcheck) {
if (debug)
std::cout << "--------------------- RECURSION local checkSA "
"---------------- "
<< localSize << std::endl;
std::vector<uint> nameAll;
std::vector<uint> SAall;
gather_vector(namearray, nameAll, X - 1, comm);
gather_vector(rdcx.localSA, SAall, 0, comm);
DBG_ARRAY(debug_recursion, "nameAll", nameAll);
DBG_ARRAY(debug_recursion, "SAall", SAall);
if (comm.is_root()) {
assert(sachecker::sa_checker(nameAll, SAall));
}
comm.barrier();
}
vector_free(namearray);
DBG_ARRAY(debug_recursion, "Recursive localSA", rdcx.localSA);
uint SAsize = rdcx.localSA.size();
std::vector<uint> allSAsize(comm.size() + 1, 0);
comm.allgather(kamping::send_buf(SAsize),
kamping::recv_buf(allSAsize));
exclusive_prefixsum(allSAsize.data(), comm.size());
DBG_ARRAY2(debug_recursion, "allSAsize", allSAsize.data(),
comm.size() + 1);
// generate array of pairs (index,rank) from localSA
P.resize(rdcx.localSA.size());
for (unsigned int i = 0; i < rdcx.localSA.size(); ++i) {
// generate index in ModDiv sorted input sequence
uint saidx = rdcx.localSA[i];
unsigned int divM = saidx / namesGlobalMultipleOfX;
uint index = DC[divM] + X * (saidx - divM * namesGlobalMultipleOfX);
P[i].index = index;
P[i].name = allSAsize[comm.rank()] + i + 1;
}
}
} else // use sequential suffix sorter
{
if (debug)
std::cout << "--------------------- RECURSION local sais "
"---------------- "
<< localSize << std::endl;
std::vector<Pair> Pall;
gather_vector(P, Pall, 0, comm);
if (comm.is_root()) {
assert(Pall.size() == (int)namesGlobalSize);
DBG_ARRAY(debug_recursion, "Global Names sorted index", Pall);
std::sort(Pall.begin(), Pall.end(),
Pair::cmpIndexModDiv); // sort locally
DBG_ARRAY(debug_recursion, "Global Names sorted cmpModDiv", Pall);