You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
These was no error while installing. But when running prediction, the error information was:
...
I0703 12:56:00.237594 140343651034944 run_alphafold.py:191] Running model model_1_pred_0 on s_rbd
I0703 12:56:02.881171 140343651034944 model.py:165] Running predict with shape(feat) = {'aatype': (4, 222), 'residue_index': (4, 222), 'seq_length': (4,), 'template_aatype': (4, 4, 222), 'template_all_atom_masks': (4, 4, 222, 37), 'template_all_atom_positions': (4, 4, 222, 37, 3), 'template_sum_probs': (4, 4, 1), 'is_distillation': (4,), 'seq_mask': (4, 222), 'msa_mask': (4, 508, 222), 'msa_row_mask': (4, 508), 'random_crop_to_size_seed': (4, 2), 'template_mask': (4, 4), 'template_pseudo_beta': (4, 4, 222, 3), 'template_pseudo_beta_mask': (4, 4, 222), 'atom14_atom_exists': (4, 222, 14), 'residx_atom14_to_atom37': (4, 222, 14), 'residx_atom37_to_atom14': (4, 222, 37), 'atom37_atom_exists': (4, 222, 37), 'extra_msa': (4, 5120, 222), 'extra_msa_mask': (4, 5120, 222), 'extra_msa_row_mask': (4, 5120), 'bert_mask': (4, 508, 222), 'true_msa': (4, 508, 222), 'extra_has_deletion': (4, 5120, 222), 'extra_deletion_value': (4, 5120, 222), 'msa_feat': (4, 508, 222, 49), 'target_feat': (4, 222, 22)}
2024-07-03 12:56:02.906804: E external/xla/xla/stream_executor/cuda/cuda_dnn.cc:439] Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
2024-07-03 12:56:02.906866: E external/xla/xla/stream_executor/cuda/cuda_dnn.cc:443] Memory usage: 22732734464 bytes free, 25390809088 bytes total.
Traceback (most recent call last):
File "/home/server/alphafold-2.3.1/run_alphafold.py", line 432, in <module>
app.run(main)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/absl/app.py", line 312, in run
_run_main(main, args)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/absl/app.py", line 258, in _run_main
sys.exit(main(argv))
File "/home/server/alphafold-2.3.1/run_alphafold.py", line 408, in main
predict_structure(
File "/home/server/alphafold-2.3.1/run_alphafold.py", line 199, in predict_structure
prediction_result = model_runner.predict(processed_feature_dict,
File "/home/server/alphafold-2.3.1/alphafold/model/model.py", line 167, in predict
result = self.apply(self.params, jax.random.PRNGKey(random_seed), feat)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/random.py", line 160, in PRNGKey
key = prng.seed_with_impl(impl, seed)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 406, in seed_with_impl
return random_seed(seed, impl=impl)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 690, in random_seed
return random_seed_p.bind(seeds_arr, impl=impl)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 702, in random_seed_impl
base_arr = random_seed_impl_base(seeds, impl=impl)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 707, in random_seed_impl_base
return seed(seeds)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 936, in threefry_seed
return _threefry_seed(seed)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/traceback_util.py", line 166, in reraise_with_filtered_traceback
return fun(*args, **kwargs)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/pjit.py", line 250, in cache_miss
outs, out_flat, out_tree, args_flat, jaxpr = _python_pjit_helper(
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/pjit.py", line 163, in _python_pjit_helper
out_flat = pjit_p.bind(*args_flat, **params)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/core.py", line 2677, in bind
return self.bind_with_trace(top_trace, args, params)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/core.py", line 383, in bind_with_trace
out = trace.process_primitive(self, map(trace.full_raise, args), params)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/core.py", line 815, in process_primitive
return primitive.impl(*tracers, **params)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/pjit.py", line 1203, in _pjit_call_impl
return xc._xla.pjit(name, f, call_impl_cache_miss, [], [], donated_argnums,
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/pjit.py", line 1187, in call_impl_cache_miss
out_flat, compiled = _pjit_call_impl_python(
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/pjit.py", line 1120, in _pjit_call_impl_python
compiled = _pjit_lower(
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/interpreters/pxla.py", line 2323, in compile
executable = UnloadedMeshExecutable.from_hlo(
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/interpreters/pxla.py", line 2645, in from_hlo
xla_executable, compile_options = _cached_compilation(
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/interpreters/pxla.py", line 2555, in _cached_compilation
xla_executable = dispatch.compile_or_get_cached(
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/dispatch.py", line 497, in compile_or_get_cached
return backend_compile(backend, computation, compile_options,
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/profiler.py", line 314, in wrapper
return func(*args, **kwargs)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/dispatch.py", line 465, in backend_compile
return backend.compile(built_c, compile_options=options)
jax._src.traceback_util.UnfilteredStackTrace: jaxlib.xla_extension.XlaRuntimeError: FAILED_PRECONDITION: DNN library initialization failed. Look at the errors above for more details.
The stack trace below excludes JAX-internal frames.
The preceding is the original exception that occurred, unmodified.
--------------------
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/server/alphafold-2.3.1/run_alphafold.py", line 432, in <module>
app.run(main)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/absl/app.py", line 312, in run
_run_main(main, args)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/absl/app.py", line 258, in _run_main
sys.exit(main(argv))
File "/home/server/alphafold-2.3.1/run_alphafold.py", line 408, in main
predict_structure(
File "/home/server/alphafold-2.3.1/run_alphafold.py", line 199, in predict_structure
prediction_result = model_runner.predict(processed_feature_dict,
File "/home/server/alphafold-2.3.1/alphafold/model/model.py", line 167, in predict
result = self.apply(self.params, jax.random.PRNGKey(random_seed), feat)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/random.py", line 160, in PRNGKey
key = prng.seed_with_impl(impl, seed)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 406, in seed_with_impl
return random_seed(seed, impl=impl)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 690, in random_seed
return random_seed_p.bind(seeds_arr, impl=impl)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/core.py", line 380, in bind
return self.bind_with_trace(find_top_trace(args), args, params)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/core.py", line 383, in bind_with_trace
out = trace.process_primitive(self, map(trace.full_raise, args), params)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/core.py", line 815, in process_primitive
return primitive.impl(*tracers, **params)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 702, in random_seed_impl
base_arr = random_seed_impl_base(seeds, impl=impl)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 707, in random_seed_impl_base
return seed(seeds)
File "/home/server/miniconda3/envs/alphafold-ndd/lib/python3.8/site-packages/jax/_src/prng.py", line 936, in threefry_seed
return _threefry_seed(seed)
jaxlib.xla_extension.XlaRuntimeError: FAILED_PRECONDITION: DNN library initialization failed. Look at the errors above for more details.
How to fix this error? Thanks!
The text was updated successfully, but these errors were encountered:
AlphaFold non docker with AlphaFold 2.3.1 worked well in a NVidia V100 card. But it cannot work on a 4090 card.
I have followed the instruction in AlphaFold discussion: google-deepmind/alphafold#786
and made modification in these steps:
These was no error while installing. But when running prediction, the error information was:
How to fix this error? Thanks!
The text was updated successfully, but these errors were encountered: