forked from thinng/GraphDTA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_data.py
139 lines (123 loc) · 6 KB
/
create_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import pandas as pd
import numpy as np
import os
import json,pickle
from collections import OrderedDict
from rdkit import Chem
from rdkit.Chem import MolFromSmiles
import networkx as nx
from utils import *
def atom_features(atom):
return np.array(one_of_k_encoding_unk(atom.GetSymbol(),['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na','Ca', 'Fe', 'As', 'Al', 'I', 'B', 'V', 'K', 'Tl', 'Yb','Sb', 'Sn', 'Ag', 'Pd', 'Co', 'Se', 'Ti', 'Zn', 'H','Li', 'Ge', 'Cu', 'Au', 'Ni', 'Cd', 'In', 'Mn', 'Zr','Cr', 'Pt', 'Hg', 'Pb', 'Unknown']) +
one_of_k_encoding(atom.GetDegree(), [0, 1, 2, 3, 4, 5, 6,7,8,9,10]) +
one_of_k_encoding_unk(atom.GetTotalNumHs(), [0, 1, 2, 3, 4, 5, 6,7,8,9,10]) +
one_of_k_encoding_unk(atom.GetImplicitValence(), [0, 1, 2, 3, 4, 5, 6,7,8,9,10]) +
[atom.GetIsAromatic()])
def one_of_k_encoding(x, allowable_set):
if x not in allowable_set:
raise Exception("input {0} not in allowable set{1}:".format(x, allowable_set))
return list(map(lambda s: x == s, allowable_set))
def one_of_k_encoding_unk(x, allowable_set):
"""Maps inputs not in the allowable set to the last element."""
if x not in allowable_set:
x = allowable_set[-1]
return list(map(lambda s: x == s, allowable_set))
def smile_to_graph(smile):
mol = Chem.MolFromSmiles(smile)
c_size = mol.GetNumAtoms()
features = []
for atom in mol.GetAtoms():
feature = atom_features(atom)
features.append( feature / sum(feature) )
edges = []
for bond in mol.GetBonds():
edges.append([bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()])
g = nx.Graph(edges).to_directed()
edge_index = []
for e1, e2 in g.edges:
edge_index.append([e1, e2])
return c_size, features, edge_index
def seq_cat(prot):
x = np.zeros(max_seq_len)
for i, ch in enumerate(prot[:max_seq_len]):
x[i] = seq_dict[ch]
return x
# from DeepDTA data
all_prots = []
datasets = ['kiba','davis']
for dataset in datasets:
print('convert data from DeepDTA for ', dataset)
fpath = 'data/' + dataset + '/'
train_fold = json.load(open(fpath + "folds/train_fold_setting1.txt"))
train_fold = [ee for e in train_fold for ee in e ]
valid_fold = json.load(open(fpath + "folds/test_fold_setting1.txt"))
ligands = json.load(open(fpath + "ligands_can.txt"), object_pairs_hook=OrderedDict)
proteins = json.load(open(fpath + "proteins.txt"), object_pairs_hook=OrderedDict)
affinity = pickle.load(open(fpath + "Y","rb"), encoding='latin1')
drugs = []
prots = []
for d in ligands.keys():
lg = Chem.MolToSmiles(Chem.MolFromSmiles(ligands[d]),isomericSmiles=True)
drugs.append(lg)
for t in proteins.keys():
prots.append(proteins[t])
if dataset == 'davis':
affinity = [-np.log10(y/1e9) for y in affinity]
affinity = np.asarray(affinity)
opts = ['train','test']
for opt in opts:
rows, cols = np.where(np.isnan(affinity)==False)
if opt=='train':
rows,cols = rows[train_fold], cols[train_fold]
elif opt=='test':
rows,cols = rows[valid_fold], cols[valid_fold]
with open('data/' + dataset + '_' + opt + '.csv', 'w') as f:
f.write('compound_iso_smiles,target_sequence,affinity\n')
for pair_ind in range(len(rows)):
ls = []
ls += [ drugs[rows[pair_ind]] ]
ls += [ prots[cols[pair_ind]] ]
ls += [ affinity[rows[pair_ind],cols[pair_ind]] ]
f.write(','.join(map(str,ls)) + '\n')
print('\ndataset:', dataset)
print('train_fold:', len(train_fold))
print('test_fold:', len(valid_fold))
print('len(set(drugs)),len(set(prots)):', len(set(drugs)),len(set(prots)))
all_prots += list(set(prots))
seq_voc = "ABCDEFGHIKLMNOPQRSTUVWXYZ"
seq_dict = {v:(i+1) for i,v in enumerate(seq_voc)}
seq_dict_len = len(seq_dict)
max_seq_len = 1000
compound_iso_smiles = []
for dt_name in ['kiba','davis']:
opts = ['train','test']
for opt in opts:
df = pd.read_csv('data/' + dt_name + '_' + opt + '.csv')
compound_iso_smiles += list( df['compound_iso_smiles'] )
compound_iso_smiles = set(compound_iso_smiles)
smile_graph = {}
for smile in compound_iso_smiles:
g = smile_to_graph(smile)
smile_graph[smile] = g
datasets = ['davis','kiba']
# convert to PyTorch data format
for dataset in datasets:
processed_data_file_train = 'data/processed/' + dataset + '_train.pt'
processed_data_file_test = 'data/processed/' + dataset + '_test.pt'
if ((not os.path.isfile(processed_data_file_train)) or (not os.path.isfile(processed_data_file_test))):
df = pd.read_csv('data/' + dataset + '_train.csv')
train_drugs, train_prots, train_Y = list(df['compound_iso_smiles']),list(df['target_sequence']),list(df['affinity'])
XT = [seq_cat(t) for t in train_prots]
train_drugs, train_prots, train_Y = np.asarray(train_drugs), np.asarray(XT), np.asarray(train_Y)
df = pd.read_csv('data/' + dataset + '_test.csv')
test_drugs, test_prots, test_Y = list(df['compound_iso_smiles']),list(df['target_sequence']),list(df['affinity'])
XT = [seq_cat(t) for t in test_prots]
test_drugs, test_prots, test_Y = np.asarray(test_drugs), np.asarray(XT), np.asarray(test_Y)
# make data PyTorch Geometric ready
print('preparing ', dataset + '_train.pt in pytorch format!')
train_data = TestbedDataset(root='data', dataset=dataset+'_train', xd=train_drugs, xt=train_prots, y=train_Y,smile_graph=smile_graph)
print('preparing ', dataset + '_test.pt in pytorch format!')
test_data = TestbedDataset(root='data', dataset=dataset+'_test', xd=test_drugs, xt=test_prots, y=test_Y,smile_graph=smile_graph)
print(processed_data_file_train, ' and ', processed_data_file_test, ' have been created')
else:
print(processed_data_file_train, ' and ', processed_data_file_test, ' are already created')