Skip to content

Latest commit

 

History

History
66 lines (47 loc) · 1.23 KB

README.md

File metadata and controls

66 lines (47 loc) · 1.23 KB

sketches

aka Probabilistic data structures for mining in data streams, in pure Python.

Installation

python setup.py install

HyperLogLog

Original paper: http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

More on: http://research.neustar.biz/tag/hyperloglog/

Usage:

from sketches import HyperLogLog

h = HyperLogLog(10)

for i in range(100000):
  h.add(i)

print(h.estimate())

> 99860.5333365

Count-Min

Original paper: here

More on: https://sites.google.com/site/countminsketch/

Usage:

from sketches import CountMin

s = CountMin(10, 10)
data = np.random.zipf(2, 10000)
for v in data:
    s.add(v)

print(s.estimate(1))
> 6130.0

print(len([x for x in data if x == 1]))
> 6110

TODO:

  • HLL improvements:
    • HLL++
    • Sliding window HLL
  • Count-Mean-Min
  • Stream-Summary
  • Min-Hash
  • Bloom filter
  • Frugal sketches