-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoment_approach_Allee_bd.m
272 lines (239 loc) · 6.87 KB
/
moment_approach_Allee_bd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
% Allee effect on birth & death-->
%Moment- Approach fitting of stochastic birth-death-Allee process for small cell
% number data
% This code is first attempt to use moment-approach (so mean and
% variance)of N(t) trajectories to fit small cell number well data.
% We will start by simulating stochastic cell trajectories using a set b
% and d, and A , and see if we can use the following equations for <n(t)> and V(t)
% to perform parameter estimation in Bayesian framework
% For random birth death process we have:
%d<n>/dt=(b-d)<n>(1-A/<n>)
close all; clear all; clc
% Start by generating 20 n0=1 trajectories
% assume birth rate = 0.0238, death rate = 0.005
% Set up time and N counter
Ninit = [1 2 3 4 5 6 7];
Ninit = 5;
for i = 1:length(Ninit)
b = 0.0233 + .0005; % birth rate
d = 0.0045 + .0005; % death rate
delta= b+d;
A = 1;
%birth_n = b*N; % birth hazard function
%death_n = d*N; % death hazard function
num_samps = 5000;
num_iters = 150;
take_offs = 0;
state = zeros(num_iters,num_samps);
tstate = zeros(num_iters,num_samps);
state(1,:) = Ninit(i); % at time 0, number of cells =N
tjump(1, :) = 0; % start at time 0
ct_extinct = 0;
for j = 1:num_samps
N=Ninit(i);
N0 = N;
time(1)= 0;
for k = 2:num_iters
birth_n = (b*N-0.5.*(b-d).*A); % birth
if birth_n <0
birth_n = 0;
end
death_n = (d*N+0.5.*(b-d).*A); % death
if N==0
N=0;
else
r = rand;
if r< (birth_n)/(birth_n+death_n)
N = N+1;
end
if r>= (birth_n)/(birth_n+death_n)
N = N-1;
end
end
state(k, j) = N;
% set time step to be proportional
r2=rand;
tstep =-log(r2)/(birth_n + death_n);
if tstep == Inf
% make tstep same as previous?
tstep = 1;
end
time = time + tstep;
tstate(k,j) = time;
% If N goes below 0, cells go extinct, N=0 throughout
if N <= 0
state(k:end,j) = 0;
end
end
thres = 0;
if state(end,j) > thres
take_offs= take_offs +1;
end
ind(j) = state(end,j)>thres;
end
P_takeoff(i)= take_offs/num_samps;
P_tkoff_theor(i) = 1-((d/b).^Ninit(i));
end
% find minimum time "measured"
tmin = min(tstate(end, :));
% add constant technical noise to data
sigmaT = 0; % guess that on average count is off by one quarter of a cell?
state = state+ round(normrnd(0, sigmaT,size(state)));
% eliminate those below 0
for j=1:size(state,1)
for i = 1:size(state,2)
if state(j,i)<0
state(j,i)=0;
end
end
end
%% Plot P_est with simulated data vs expected value
figure;
plot(delta,P_takeoff, '*', 'LineWidth',2)
hold on
plot(delta, P_tkoff_theor,'-','LineWidth',2)
xlabel('\delta = b+d')
ylabel('P_{establishment}')
title('Simulated vs. Expected P_{establishment} for increasing \delta')
legend('simulated', 'expected')
legend boxoff
P_est_theor=1-((d/b).^Ninit);
figure;
plot(Ninit, P_est_theor,'-', 'LineWidth',2)
hold on
plot(Ninit,P_takeoff, '*', 'LineWidth',2)
xlabel('Initial cell number')
ylabel('P_est')
title('P_est vs. N_{0} for constant \delta and b-d')
legend('expected if b-d process', 'measured from Allee sim')
legend boxoff
ylim([0 1])
%% Plot simulated cell number trajectories out to minimum time reached
figure;
hold off
for j = 1:num_samps
plot(tstate(:,j), state(:,j))
hold on
end
xlim([0, tmin])
xlabel('time (hours)')
ylabel('Number of cells')
title(['Simulated N(t) trajectories for b=', num2str(b), ' & d=', num2str(d)])
%% UNIFORM SAMPLING from stochastic trajectories
%Want to smooth by sampling from N at tsamp
tstart=0;
tint=2;
tsamp = tstart:tint:100+tstart;
for j = 1:num_samps
tstoch = tstate(:,j);
Nstoch = state(:,j);
for i = 1:length(tsamp)
% find nearest tstate that is less that tsamp
ind =find(tstoch<=tsamp(i),1,'last');
tfind = tstoch(ind);
Nsamp(i,j)=Nstoch(ind);
end
end
mu_data = mean(Nsamp,2);
figure;
hold on
for j = 1:num_samps
plot(tsamp,Nsamp(:,j), 'r.');
hold on
plot(tstate(:,j), state(:,j),'b.');
end
plot(tsamp, mu_data, 'k-', 'LineWidth',3)
xlabel ('time (hours)')
ylabel('<n> expected')
xlim([0, tsamp(end)])
title('Mean value of N in time for N0=5, A = 2')
%% Compare moment approach approximations
V0=0;
C_init(1)=N0;
C_init(2)=N0.^2;
C_init(3) = V0;
C_init(4)= N0.^3;
C_init(5)= N0.^4;
C_init(6) = V0;
f = @(t,C) [((b-d)*C(1)-(b-d)*A); % dn/dt
2*C(2).*(b-d)- 2.*C(1)*(b-d)*A + C(1).*(b+d); % dn2/dt
2*C(2).*(b-d)- 2.*C(1)*(b-d)*A + C(1).*(b+d)- 2.*C(1).*((b-d)*C(1)-(b-d)*A); % dV/dt
(3.*C(4).*(b-d)) + (3.*C(2).*(b+d))-(3.*C(2).*(b-d).*A) + (C(1).*(b-d)) - ((b-d)*A);%dn3dt
(4.*C(5).*(b-d)) + (6.*C(4).*(b+d))-(4.*C(4).*(b-d).*A)+(4.*C(2).*(b-d))+ (C(1).*(b+d))+...
(4.*C(1).*(b-d).*A); %dn4dt
(4.*C(5).*(b-d)) + (6.*C(4).*(b+d))-(4.*C(4).*(b-d).*A)+(4.*C(2).*(b-d))+ (C(1).*(b+d))+...
(4.*C(1).*(b-d).*A)- (4.*((C(1)).^3).*(((b-d).*C(1)-(b-d).*A)))];
options1 = odeset('Refine',1);
options = odeset(options1,'NonNegative',1:6);
[t,C]=ode45(f, tsamp,C_init, options);
mu_C= C(:,1);
n2_C= C(:,2);
v2_C=C(:,3);
n3_C = C(:,4);
n4_C = C(:,5);
v4_C=C(:,6);
%% Plot Sampled Data from Stochastic Simulations alongside expected values of mean and variance
mu_data = mean(Nsamp,2);
n_2_data = mean((Nsamp.^2),2);
n_3_data = mean((Nsamp.^3),2);
n_4_data = mean((Nsamp.^4),2);
var_data = n_2_data - ((mu_data).^2);
var4_data = n_4_data - ((mu_data).^4);
%var_data = (std(Nsamp,0,2).^2);
figure;
subplot(1,2,1)
plot(tsamp, mu_data(1:end), 'r*')
hold on
plot(tsamp, mu_C, 'k-', 'LineWidth',2)
xlabel('time (hours)')
ylabel('mean cell number')
title('Strong Allee on birth & death mean', 'FontSize', 14)
legend('mean n simulated data', 'expected mean n')
legend boxoff
% subplot(1,3,2)
% plot(tsamp, n_2_data(1:end), 'g*')
% hold on
% plot(tsamp, n2_C, 'b.', 'LineWidth',2)
% xlabel('time (hours)')
% ylabel('<n2>')
% title('Expected vs. simulated <n2>')
% legend('<n2> in simulated data', 'expected <n2>')
% legend boxoff
subplot(1,2,2)
plot(tsamp, var_data(1:end), 'g*')
hold on
plot(tsamp, v2_C, 'k-', 'LineWidth',2)
xlabel('time (hours)')
ylabel('Variance')
title('Strong Allee on birth & death variance', 'FontSize', 14)
legend('Variance in simulated data', 'expected Variance')
legend boxoff
%%
figure;
subplot(1,3,1)
plot(tsamp, n_3_data(1:end), 'm*')
hold on
plot(tsamp, n3_C, 'b.', 'LineWidth',2)
xlabel('time (hours)')
ylabel('<n3>')
title('Expected vs. simulated <n3>')
legend('<n3> in simulated data', 'expected <n3>')
legend boxoff
subplot(1,3,2)
plot(tsamp, n_4_data(1:end), 'g*')
hold on
plot(tsamp, n4_C, 'b-', 'LineWidth',2)
xlabel('time (hours)')
ylabel('<n4>')
title('Expected vs. simulated <n4>')
legend('<n4> in simulated data', 'expected <n4>')
legend boxoff
subplot(1,3,3)
plot(tsamp, var4_data(1:end), 'r-')
hold on
plot(tsamp, v4_C, 'b-', 'LineWidth',1)
xlabel('time (hours)')
ylabel('Var4')
title('Expected vs. simulated Var4')
legend('<n4> in simulated data', 'expected <n4>')
legend boxoff