-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_allee_closed_form.m
executable file
·232 lines (206 loc) · 7.9 KB
/
analyze_allee_closed_form.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
% Analyze Allee Effect with closed form solution
close all; clear all; clc
% This script ensures that the Allee effect works for a
% set of input conditions, and analyzes the resulting effects of growth
% with various parameters and initial conditions
% Growth Dynamics Function:
% dN/dt = gN(N/A-1)
% N(t)= (N0-A)exp(gt/A) + A
%% Run once for single value of A, g, and eta
t = 0:2:98;
N0 = [8 16 32 ];
num_runs = length(N0);
tbig = repmat(t, num_runs, 1);
num_meas = length(t);
vert_length = num_meas*num_runs;
tlong = reshape(tbig', vert_length,1);
A = 5;
eta = 0.2;
% take g and sigma from 32 cell well growth curves
g = 0.0188;
sigma = 0.0075;
params = [g,A];
% for i = 1:length(N0)
% Nmodel(:,i)= (N0(i)-A).*exp(g*tbig(i,:)) + A;
% for j = 1:length(Nmodel(:,i))
% if Nmodel(j,i) <0
% Nmodel(j,i) = 0;
% end
% end
% end
iall = find(tlong>=0);
%%
N0 = [ 5, 10, 20];
Nmodel = simmodelAllee(params, tbig, N0);
%Nmodel = round(Nmodel,0);
Nmodellong = simmodelAlleelong(params, tlong,iall, N0);
Nmodellong = simmodelAlleelong_distrib(params,sigma, tlong, N0);
%Nmodellong = round(Nmodellong, 0);
% test
%%
eta = 1;
noise = eta*(1-2*randn(length(tbig),length(N0)));
Nfake = Nmodel + noise;
% eliminate negative values in noisy data
for i = 1:length(N0)
for j = 1:length(Nfake(:,i))
if Nfake(j,i) <0
Nfake(j,i) = 0;
end
end
end
Nfake = round(Nfake,0);
Nfakelong = reshape(Nfake, [size(Nfake,1)*size(Nfake,2),1]);
figure;
subplot(1,2,1)
hold off
for j = 1:length(N0)
hold on
semilogy(tbig(j,:), Nmodel(:,j), 'LineWidth', 3)
hold on
%semilogy(tbig(j,:), Nfake(:,j), 'LineWidth', 2)
text(tbig(j, end-15), Nmodel(end-15,j), [ 'N_{0} = ', num2str(N0(j)) ],'HorizontalAlignment','left','VerticalAlignment','bottom','color','k')
% plot(tout, Nfake(:,j), 'o')
%ylim([ 0 200])
end
hold on
%plot(tlong, Nmodellong,'*')
xlabel('time')
ylabel('N')
title(['Allee effect growth dynamics, A= ', num2str(A)])
%legend('N_{0} = 2', 'N_{0} = 5', 'N_{0} = 10', 'N_{0} = 12', 'N_{0} = 20')
legend boxoff
for j = 1:length(N0)
percapitag(:,j) = Nmodel(:,j)/N0(j);
end
subplot(1,2,2)
hold on
for j = 1:length(N0)
plot(tbig(j,:), log(percapitag(:,j)),'LineWidth', 3);
text(tbig(j,30), log(percapitag(30,j)), [ 'N_{0} = ', num2str(N0(j)) ],'HorizontalAlignment','left','VerticalAlignment','bottom','color','k')
end
%ylim([-1 2])
xlabel('time')
ylabel('log(N/N_{o})')
title(['Allee effect per capita growth rate, A= ', num2str(A)])
%% Fit Allee effect with Bayesian
% Allee effect equation params g and A
pfxform = @(pval)[1 1].*log(pval); %'forward' parameter transform into Reals
pbxform = @(phat)[1 1].*exp(phat); %'backward' parameter transform into model space
pfxformg = @(pval)[1].*log(pval);
pbxformg = @(phat)[1].*exp(phat);
yfxform = @(y)log(y); % 'forward' transform for data and model output
ybxform = @(yhat)exp(yhat); % 'inverse' transform for data and model output
% Find 0s and mark those indices. Will use censoring on 0 measurements with
% assumption of error being both additive and proportional (i.e. 0
% measurement has a SD of error of 1 cell, so we will sum over the interval
% from 0 to 1 for those data points)
LLOQ = 2;
icens = find(Nfakelong <LLOQ);
igood = find(Nfakelong>= LLOQ);
modelfungood= @(p)simmodelAlleelong(p, tlong, igood, N0);
modelfuncens= @(p)simmodelAlleelong(p, tlong, icens, N0);
modelfunsinggood = @(p)simmodelsingexplong(p, tlong, igood, N0);
modelfunsingcens = @(p)simmodelsingexplong(p, tlong, icens, N0);
gguess = g + 0.001;
Aguess = A+.5;
sigma = eta;
theta = [gguess, Aguess]; % g and A
thetag = gguess + 0.001;
Nfakelonghigh = ones(length(icens),1);
Nfakelonglow = zeros(length(icens),1);
loglikelihood = @(phat)(sum(log(normpdf(yfxform(Nfakelong(igood)),yfxform(modelfungood(pbxform(phat))), sigma)))+...
sum(log(normcdf(yfxform(Nfakelonghigh), yfxform(modelfuncens(pbxform(phat))),1))));
loglikelihoodg = @(phat)(sum(log(normpdf(yfxform(Nfakelong(igood)),yfxform(modelfunsinggood(pbxformg(phat))), sigma)))+...
sum(log(normcdf(yfxform(Nfakelonghigh), yfxform(modelfunsingcens(pbxformg(phat))),1))));
% Probably need to add normcdf term for upper interval - normcdf of lower
% interval
% minimize objective function for each structural model
objfun = @(phat)-loglikelihood(phat);
objfunsing = @(phat)-loglikelihoodg(phat);
options = optimset('MaxFunEvals',1e5, 'MaxIter', 1e5);
phatbest = fminsearch(objfun, pfxform(theta), options); % find best fitting parameters
phatbestsing = fminsearch(objfunsing, pfxformg(thetag), options);
params_Bayes = pbxform(phatbest);
params_sing = pbxformg(phatbestsing);
iall = find(tlong>=0);
Nfit = simmodelAllee(params_Bayes, tbig, N0);
Nfitsing = simmodelsingexplong(params_sing, tlong, iall, N0);
% Now find chi-squared, R-squared, and AIC value for Allee and single
% exponential model
%
%residuals (model- measured)
resAlleesq = Nfit-Nfake;
resAllee = reshape(resAlleesq, vert_length, 1);
resexp = Nfitsing-Nfakelong;
% average N
Nbar = mean(mean(Nfake));
%R-squared
RsqAllee = 1- (sum((resAllee).^2)./(sum((Nbar-Nfakelong).^2)));
Rsqexp = 1- (sum((resexp).^2)./(sum((Nbar-Nfakelong).^2)));
num_p_Allee = 2; % g and A
num_p_exp = 1; %g
AICAllee = -2*loglikelihood(phatbest) + 2*num_p_Allee;
AICexp = -2*loglikelihoodg(phatbestsing) + 2*num_p_exp;
delta_AIC = AICAllee- AICexp; % if value is negative then Allee is better model
% will run a loop through different values of A and eta and find the
% corresponding delta_AIC at each point. This will be plotted on a heat map
% to be used for parameter identifiability
%% Plot fitted model versus "data"
% Compare visually the data to the model predicted by the Bayesian fitted
% parameters
figure;
hold off
for j = 1:length(N0)
hold on
semilogy(tbig(j,:), Nfit(:,j), 'LineWidth', 3,'color', 'b')
hold on
semilogy(tbig(j,:), Nfake(:,j), 'LineWidth', 2, 'color', 'g')
text(tbig(j, end-27), Nfit(end-27,j), [ 'N_{0} = ', num2str(N0(j)) ],'HorizontalAlignment','left','VerticalAlignment','bottom','color','k')
% plot(tout, Nfake(:,j), 'o')
%ylim([ 0 200])
end
semilogy(tlong, Nfitsing, 'r.')
xlabel('time')
ylabel('N')
ylim([0 100])
%title('Allee vs. single exponential model')
%title(['Simulated Data vs. Fitted Model, A= ', num2str(A), ', A_{fit}=',num2str(params_Bayes(2)), 'vs. Single Exponential Fit, g_{fit}=', num2str(params_sing)])
%legend('N_{0} = 2', 'N_{0} = 5', 'N_{0} = 10', 'N_{0} = 12', 'N_{0} = 20')
legend boxoff
%% Run for all values of A, eta, and N0
% range of A and eta
A = [1:1:20];
% eta = [.1:.025:.575];
% N0 = [ 2 5 10 12 20 ];
% [ALLEE, ETA] = meshgrid(A, eta); % grid of parameters
% Aflat = reshape(ALLEE, 1, []);
% Etaflat = reshape(ETA, 1, []);
% run a loop through all combos of A & eta
% Redo with varying sigma
eta = 0.1;
sig = [.0005:.0004:.0084];
[ALLEE, SIG] = meshgrid(A, sig); % grid of parameters
Aflat = reshape(ALLEE, 1, []);
Sigflat = reshape(SIG, 1, []);
%%
for j = 1:length(Aflat)
% [ RsqAllee(j), Rsqexp(j), AICAllee(j), AICexp(j)] = fitgrowthdataAlleeexp(Aflat(j), g, Etaflat(j), N0);
sigma = Sigflat(j);
[ RsqAllee(j), Rsqexp(j), AICAllee(j), AICexp(j)] = fitgrowthdataAlleeexp_distrib(Aflat(j), g,sigma, eta, N0);
end
%% Next use vectors to reconstruct grid and make image
delta_AIC = -(AICAllee- AICexp);
del_AIC = reshape(delta_AIC, size(ALLEE));
% put fitted patient parameter fit in figure
figure;
minmax = @(x)([min(x) max(x)]);
imagesc(minmax(A),minmax(sig),del_AIC);
%[C,h]=contourf(GAM,PHI,DTTPDK); clabel(C,h); colorbar
caxis(10000*[-1 1]);
cmap = [[1-[0:0.8/31:.8]';zeros(32,1)] [zeros(32,1);[.2:.8/31:1]'] zeros(64,1)]; % green to red colormap
colormap(cmap); colorbar;
xlabel('A (Allee threshold)');
ylabel('\sigma (spread in g_{distribution})');
title('\delta AIC (relative improvement in Allee vs. single exponential model)');
set(gca,'Ydir','normal'); hold on;