From 31010053c6bde316c8010796975ece2f12e1d147 Mon Sep 17 00:00:00 2001
From: ioangatop
Date: Wed, 20 Mar 2024 01:15:39 +0100
Subject: [PATCH] Update README.md
---
README.md | 38 +++++++++++++++++++++++++++++++++++++-
1 file changed, 37 insertions(+), 1 deletion(-)
diff --git a/README.md b/README.md
index a6a98799..6f4d95af 100644
--- a/README.md
+++ b/README.md
@@ -16,6 +16,7 @@ _Oncology FM Evaluation Framework by kaiko.ai_
How To Use •
Documentation •
Datasets •
+ Benchmarks
Contribute •
Acknowledgements
@@ -26,7 +27,6 @@ _Oncology FM Evaluation Framework by kaiko.ai_
`eva` is an evaluation framework for oncology foundation models (FMs) by [kaiko.ai](https://kaiko.ai/). Check out the [documentation](https://kaiko-ai.github.io/eva/) for more information.
-
### Highlights:
- Easy and reliable benchmark of Oncology FMs
- Automatic embedding inference and evaluation of a downstream task
@@ -80,6 +80,41 @@ eva --help
For more information, please refer to the [documentation](https://kaiko-ai.github.io/eva/dev/user-guide/tutorials/offline_vs_online/) and [tutorials](https://kaiko-ai.github.io/eva/dev/user-guide/advanced/replicate_evaluations/).
+## Benchmarks
+
+In this section you will find model benchmarks which were generated with _eva_.
+
+### Table I: WSI patch-level benchmark
+
+
+
+
+
+| Model | BACH | CRC | MHIST | PCam/val | PCam/test |
+|--------------------------------------------------|-------|-------|-------|----------|-----------|
+| ViT-S/16 _(random)_ [1] | 0.410 | 0.617 | 0.501 | 0.753 | 0.728 |
+| ViT-S/16 _(ImageNet)_ [1] | 0.695 | 0.935 | 0.831 | 0.864 | 0.849 |
+| ViT-B/8 _(ImageNet)_ [1] | 0.797 | 0.943 | 0.828 | 0.903 | 0.893 |
+| DINO(p=16) [2] | 0.710 | 0.935 | 0.814 | 0.870 | 0.856 |
+| Phikon [3] | 0.725 | 0.935 | 0.777 | 0.912 | 0.915 |
+| ViT-S/16 _(kaiko.ai)_ [4] | 0.797 | 0.943 | 0.828 | 0.903 | 0.893 |
+| ViT-S/8 _(kaiko.ai)_ [4] | 0.834 | 0.946 | 0.832 | 0.897 | 0.887 |
+| ViT-B/16 _(kaiko.ai)_ [4] | 0.810 | 0.960 | 0.826 | 0.900 | 0.898 |
+| ViT-B/8 _(kaiko.ai)_ [4] | | | | | |
+| ViT-L/14 _(kaiko.ai)_ [4] | 0.870 | 0.930 | 0.809 | 0.908 | 0.898 |
+
+_Table I: Linear probing evaluation of FMs on patch-level downstream datasets.
We report averaged balanced accuracy
+over 5 runs_
+
+
+
+
+
+_References_:
+1. _"Emerging properties in self-supervised vision transformers”_
+2. _"Benchmarking self-supervised learning on diverse pathology datasets”_
+3. _"Scaling self-supervised learning for histopathology with masked image modeling”_
+4. _"Towards training Large-Scale Medical Foundation Models: from TCGA to hospital-scale pathology FMs”_
## Contributing
@@ -104,6 +139,7 @@ Our codebase is built using multiple opensource contributions
[![pdm-managed](https://img.shields.io/badge/pdm-managed-blueviolet)](https://pdm-project.org)
[![Nox](https://img.shields.io/badge/%F0%9F%A6%8A-Nox-D85E00.svg)](https://github.com/wntrblm/nox)
[![Built with Material for MkDocs](https://img.shields.io/badge/Material_for_MkDocs-526CFE?logo=MaterialForMkDocs&logoColor=white)](https://squidfunk.github.io/mkdocs-material/)
+
---