Skip to content

Commit

Permalink
Support Agglomerative clustering. (#1384)
Browse files Browse the repository at this point in the history
We use the open-source implementation from
https://github.com/cdalitz/hclust-cpp
  • Loading branch information
csukuangfj authored Sep 29, 2024
1 parent bc08160 commit 70568c2
Show file tree
Hide file tree
Showing 12 changed files with 343 additions and 13 deletions.
6 changes: 6 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ option(SHERPA_ONNX_ENABLE_WASM_VAD_ASR "Whether to enable WASM for VAD+ASR" OFF)
option(SHERPA_ONNX_ENABLE_WASM_NODEJS "Whether to enable WASM for NodeJS" OFF)
option(SHERPA_ONNX_ENABLE_BINARY "Whether to build binaries" ON)
option(SHERPA_ONNX_ENABLE_TTS "Whether to build TTS related code" ON)
option(SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION "Whether to build speaker diarization related code" ON)
option(SHERPA_ONNX_LINK_LIBSTDCPP_STATICALLY "True to link libstdc++ statically. Used only when BUILD_SHARED_LIBS is OFF on Linux" ON)
option(SHERPA_ONNX_USE_PRE_INSTALLED_ONNXRUNTIME_IF_AVAILABLE "True to use pre-installed onnxruntime if available" ON)
option(SHERPA_ONNX_ENABLE_SANITIZER "Whether to enable ubsan and asan" OFF)
Expand Down Expand Up @@ -142,6 +143,7 @@ message(STATUS "SHERPA_ONNX_ENABLE_WASM_VAD_ASR ${SHERPA_ONNX_ENABLE_WASM_VAD_AS
message(STATUS "SHERPA_ONNX_ENABLE_WASM_NODEJS ${SHERPA_ONNX_ENABLE_WASM_NODEJS}")
message(STATUS "SHERPA_ONNX_ENABLE_BINARY ${SHERPA_ONNX_ENABLE_BINARY}")
message(STATUS "SHERPA_ONNX_ENABLE_TTS ${SHERPA_ONNX_ENABLE_TTS}")
message(STATUS "SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION ${SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION}")
message(STATUS "SHERPA_ONNX_LINK_LIBSTDCPP_STATICALLY ${SHERPA_ONNX_LINK_LIBSTDCPP_STATICALLY}")
message(STATUS "SHERPA_ONNX_USE_PRE_INSTALLED_ONNXRUNTIME_IF_AVAILABLE ${SHERPA_ONNX_USE_PRE_INSTALLED_ONNXRUNTIME_IF_AVAILABLE}")
message(STATUS "SHERPA_ONNX_ENABLE_SANITIZER: ${SHERPA_ONNX_ENABLE_SANITIZER}")
Expand Down Expand Up @@ -341,6 +343,10 @@ if(SHERPA_ONNX_ENABLE_TTS)
include(cppjieba) # For Chinese TTS. It is a header-only C++ library
endif()

if(SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION)
include(hclust-cpp)
endif()

# if(NOT MSVC AND CMAKE_BUILD_TYPE STREQUAL Debug AND (CMAKE_CXX_COMPILER_ID STREQUAL "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang"))
if(SHERPA_ONNX_ENABLE_SANITIZER)
message(WARNING "enable ubsan and asan")
Expand Down
45 changes: 45 additions & 0 deletions cmake/hclust-cpp.cmake
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
function(download_hclust_cpp)
include(FetchContent)

# The latest commit as of 2024.09.29
set(hclust_cpp_URL "https://github.com/csukuangfj/hclust-cpp/archive/refs/tags/2024-09-29.tar.gz")
set(hclust_cpp_HASH "SHA256=abab51448a3cb54272aae07522970306e0b2cc6479d59d7b19e7aee4d6cedd33")

# If you don't have access to the Internet,
# please pre-download hclust-cpp
set(possible_file_locations
$ENV{HOME}/Downloads/hclust-cpp-2024-09-29.tar.gz
${CMAKE_SOURCE_DIR}/hclust-cpp-2024-09-29.tar.gz
${CMAKE_BINARY_DIR}/hclust-cpp-2024-09-29.tar.gz
/tmp/hclust-cpp-2024-09-29.tar.gz
/star-fj/fangjun/download/github/hclust-cpp-2024-09-29.tar.gz
)

foreach(f IN LISTS possible_file_locations)
if(EXISTS ${f})
set(hclust_cpp_URL "${f}")
file(TO_CMAKE_PATH "${hclust_cpp_URL}" hclust_cpp_URL)
message(STATUS "Found local downloaded hclust_cpp: ${hclust_cpp_URL}")
break()
endif()
endforeach()

FetchContent_Declare(hclust_cpp
URL
${hclust_cpp_URL}
${hclust_cpp_URL2}
URL_HASH ${hclust_cpp_HASH}
)

FetchContent_GetProperties(hclust_cpp)
if(NOT hclust_cpp_POPULATED)
message(STATUS "Downloading hclust_cpp from ${hclust_cpp_URL}")
FetchContent_Populate(hclust_cpp)
endif()

message(STATUS "hclust_cpp is downloaded to ${hclust_cpp_SOURCE_DIR}")
message(STATUS "hclust_cpp's binary dir is ${hclust_cpp_BINARY_DIR}")
include_directories(${hclust_cpp_SOURCE_DIR})
endfunction()

download_hclust_cpp()
13 changes: 13 additions & 0 deletions sherpa-onnx/csrc/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -160,6 +160,13 @@ if(SHERPA_ONNX_ENABLE_TTS)
)
endif()

if(SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION)
list(APPEND sources
fast-clustering-config.cc
fast-clustering.cc
)
endif()

if(SHERPA_ONNX_ENABLE_CHECK)
list(APPEND sources log.cc)
endif()
Expand Down Expand Up @@ -523,6 +530,12 @@ if(SHERPA_ONNX_ENABLE_TESTS)
)
endif()

if(SHERPA_ONNX_ENABLE_SPEAKER_DIARIZATION)
list(APPEND sherpa_onnx_test_srcs
fast-clustering-test.cc
)
endif()

list(APPEND sherpa_onnx_test_srcs
speaker-embedding-manager-test.cc
)
Expand Down
45 changes: 45 additions & 0 deletions sherpa-onnx/csrc/fast-clustering-config.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
// sherpa-onnx/csrc/fast-clustering-config.cc
//
// Copyright (c) 2024 Xiaomi Corporation

#include "sherpa-onnx/csrc/fast-clustering-config.h"

#include <sstream>
#include <string>

#include "sherpa-onnx/csrc/macros.h"

namespace sherpa_onnx {
std::string FastClusteringConfig::ToString() const {
std::ostringstream os;

os << "FastClusteringConfig(";
os << "num_clusters=" << num_clusters << ", ";
os << "threshold=" << threshold << ")";

return os.str();
}

void FastClusteringConfig::Register(ParseOptions *po) {
std::string prefix = "ctc";
ParseOptions p(prefix, po);

p.Register("num-clusters", &num_clusters,
"Number of cluster. If greater than 0, then --cluster-thresold is "
"ignored");

p.Register("cluster-threshold", &threshold,
"If --num-clusters is not specified, then it specifies the "
"distance threshold for clustering.");
}

bool FastClusteringConfig::Validate() const {
if (num_clusters < 1 && threshold < 0) {
SHERPA_ONNX_LOGE("Please provide either num_clusters or threshold");
return false;
}

return true;
}

} // namespace sherpa_onnx
28 changes: 28 additions & 0 deletions sherpa-onnx/csrc/fast-clustering-config.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
// sherpa-onnx/csrc/fast-clustering-config.h
//
// Copyright (c) 2024 Xiaomi Corporation

#ifndef SHERPA_ONNX_CSRC_FAST_CLUSTERING_CONFIG_H_
#define SHERPA_ONNX_CSRC_FAST_CLUSTERING_CONFIG_H_

#include <string>

#include "sherpa-onnx/csrc/parse-options.h"

namespace sherpa_onnx {

struct FastClusteringConfig {
// If greater than 0, then threshold is ignored
int32_t num_clusters = -1;

// distance threshold
float threshold = 0.5;

std::string ToString() const;

void Register(ParseOptions *po);
bool Validate() const;
};

} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_FAST_CLUSTERING_CONFIG_H_
69 changes: 69 additions & 0 deletions sherpa-onnx/csrc/fast-clustering-test.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
// sherpa-onnx/csrc/fast-clustering-test.cc
//
// Copyright (c) 2024 Xiaomi Corporation

#include "sherpa-onnx/csrc/fast-clustering.h"

#include <vector>

#include "gtest/gtest.h"

namespace sherpa_onnx {

TEST(FastClustering, TestTwoClusters) {
std::vector<float> features = {
// point 0
0.1,
0.1,
// point 2
0.4,
-0.5,
// point 3
0.6,
-0.7,
// point 1
0.2,
0.3,
};

FastClusteringConfig config;
config.num_clusters = 2;

FastClustering clustering(config);
auto labels = clustering.Cluster(features.data(), 4, 2);
int32_t k = 0;
for (auto i : labels) {
std::cout << "point " << k << ": label " << i << "\n";
++k;
}
}

TEST(FastClustering, TestClusteringWithThreshold) {
std::vector<float> features = {
// point 0
0.1,
0.1,
// point 2
0.4,
-0.5,
// point 3
0.6,
-0.7,
// point 1
0.2,
0.3,
};

FastClusteringConfig config;
config.threshold = 0.5;

FastClustering clustering(config);
auto labels = clustering.Cluster(features.data(), 4, 2);
int32_t k = 0;
for (auto i : labels) {
std::cout << "point " << k << ": label " << i << "\n";
++k;
}
}

} // namespace sherpa_onnx
83 changes: 83 additions & 0 deletions sherpa-onnx/csrc/fast-clustering.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
// sherpa-onnx/csrc/fast-clustering.cc
//
// Copyright (c) 2024 Xiaomi Corporation

#include "sherpa-onnx/csrc/fast-clustering.h"

#include <vector>

#include "Eigen/Dense"
#include "fastcluster-all-in-one.h" // NOLINT

namespace sherpa_onnx {

class FastClustering::Impl {
public:
explicit Impl(const FastClusteringConfig &config) : config_(config) {}

std::vector<int32_t> Cluster(float *features, int32_t num_rows,
int32_t num_cols) {
if (num_rows <= 0) {
return {};
}

if (num_rows == 1) {
return {0};
}

Eigen::Map<
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
m(features, num_rows, num_cols);
m.rowwise().normalize();

std::vector<double> distance((num_rows * (num_rows - 1)) / 2);

int32_t k = 0;
for (int32_t i = 0; i != num_rows; ++i) {
auto v = m.row(i);
for (int32_t j = i + 1; j != num_rows; ++j) {
double cosine_similarity = v.dot(m.row(j));
double consine_dissimilarity = 1 - cosine_similarity;

if (consine_dissimilarity < 0) {
consine_dissimilarity = 0;
}

distance[k] = consine_dissimilarity;
++k;
}
}

std::vector<int32_t> merge(2 * (num_rows - 1));
std::vector<double> height(num_rows - 1);

fastclustercpp::hclust_fast(num_rows, distance.data(),
fastclustercpp::HCLUST_METHOD_SINGLE,
merge.data(), height.data());

std::vector<int32_t> labels(num_rows);
if (config_.num_clusters > 0) {
fastclustercpp::cutree_k(num_rows, merge.data(), config_.num_clusters,
labels.data());
} else {
fastclustercpp::cutree_cdist(num_rows, merge.data(), height.data(),
config_.threshold, labels.data());
}

return labels;
}

private:
FastClusteringConfig config_;
};

FastClustering::FastClustering(const FastClusteringConfig &config)
: impl_(std::make_unique<Impl>(config)) {}

FastClustering::~FastClustering() = default;

std::vector<int32_t> FastClustering::Cluster(float *features, int32_t num_rows,
int32_t num_cols) {
return impl_->Cluster(features, num_rows, num_cols);
}
} // namespace sherpa_onnx
43 changes: 43 additions & 0 deletions sherpa-onnx/csrc/fast-clustering.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
// sherpa-onnx/csrc/fast-clustering.h
//
// Copyright (c) 2024 Xiaomi Corporation

#ifndef SHERPA_ONNX_CSRC_FAST_CLUSTERING_H_
#define SHERPA_ONNX_CSRC_FAST_CLUSTERING_H_

#include <memory>
#include <vector>

#include "sherpa-onnx/csrc/fast-clustering-config.h"

namespace sherpa_onnx {

class FastClustering {
public:
explicit FastClustering(const FastClusteringConfig &config);
~FastClustering();

/**
* @param features Pointer to a 2-D feature matrix in row major. Each row
* is a feature frame. It is changed in-place. We will
* convert each feature frame to a normalized vector.
* That is, the L2-norm of each vector will be equal to 1.
* It uses cosine dissimilarity,
* which is 1 - (cosine similarity)
* @param num_rows Number of feature frames
* @param num-cols The feature dimension.
*
* @return Return a vector of size num_rows. ans[i] contains the label
* for the i-th feature frame, i.e., the i-th row of the feature
* matrix.
*/
std::vector<int32_t> Cluster(float *features, int32_t num_rows,
int32_t num_cols);

private:
class Impl;
std::unique_ptr<Impl> impl_;
};

} // namespace sherpa_onnx
#endif // SHERPA_ONNX_CSRC_FAST_CLUSTERING_H_
2 changes: 0 additions & 2 deletions sherpa-onnx/csrc/offline-stream.cc
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,6 @@

#include "sherpa-onnx/csrc/offline-stream.h"

#include <math.h>

#include <algorithm>
#include <cassert>
#include <cmath>
Expand Down
Loading

0 comments on commit 70568c2

Please sign in to comment.