diff --git a/.github/workflows/ljspeech.yml b/.github/workflows/ljspeech.yml index 25402275b4..e202d21b58 100644 --- a/.github/workflows/ljspeech.yml +++ b/.github/workflows/ljspeech.yml @@ -90,7 +90,7 @@ jobs: path: ./*.wav - name: Release exported onnx models - if: matrix.python-version == '3.9' && matrix.torch-version == '2.2.0' + if: matrix.python-version == '3.9' && matrix.torch-version == '2.2.0' && github.event_name == 'push' uses: svenstaro/upload-release-action@v2 with: file_glob: true diff --git a/docs/source/for-dummies/environment-setup.rst b/docs/source/for-dummies/environment-setup.rst index a68e9d3edc..e257b915c5 100644 --- a/docs/source/for-dummies/environment-setup.rst +++ b/docs/source/for-dummies/environment-setup.rst @@ -74,6 +74,10 @@ to install dependencies of `icefall`_: pip install k2==1.24.4.dev20231220+cpu.torch2.0.0 -f https://k2-fsa.github.io/k2/cpu.html + # For users from China + # 中国国内用户,如果访问不了 huggingface, 请使用 + # pip install k2==1.24.4.dev20231220+cpu.torch2.0.0 -f https://k2-fsa.github.io/k2/cpu-cn.html + # Install the latest version of lhotse pip install git+https://github.com/lhotse-speech/lhotse diff --git a/docs/source/installation/index.rst b/docs/source/installation/index.rst index 5a034ef5bf..87318f30ec 100644 --- a/docs/source/installation/index.rst +++ b/docs/source/installation/index.rst @@ -206,6 +206,9 @@ We will install `k2`_ from pre-compiled wheels by following .. code-block:: bash (test-icefall) kuangfangjun:~$ pip install k2==1.24.3.dev20230725+cuda11.6.torch1.13.0 -f https://k2-fsa.github.io/k2/cuda.html + # For users from China + # 中国国内用户,如果访问不了 huggingface, 请使用 + # pip install k2==1.24.3.dev20230725+cuda11.6.torch1.13.0 -f https://k2-fsa.github.io/k2/cuda-cn.html Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Looking in links: https://k2-fsa.github.io/k2/cuda.html diff --git a/egs/librispeech/ASR/zipformer/zipformer.py b/egs/librispeech/ASR/zipformer/zipformer.py index 61ae378d88..17a3f8719a 100644 --- a/egs/librispeech/ASR/zipformer/zipformer.py +++ b/egs/librispeech/ASR/zipformer/zipformer.py @@ -788,7 +788,7 @@ def forward( selected_attn_weights = attn_weights[0:1] if torch.jit.is_scripting() or torch.jit.is_tracing(): pass - elif not self.training and random.random() < float(self.const_attention_rate): + elif self.training and random.random() < float(self.const_attention_rate): # Make attention weights constant. The intention is to # encourage these modules to do something similar to an # averaging-over-time operation. diff --git a/egs/librispeech/ASR/zipformer_adapter/export-onnx.py b/egs/librispeech/ASR/zipformer_adapter/export-onnx.py index ea29e81595..0623961686 100755 --- a/egs/librispeech/ASR/zipformer_adapter/export-onnx.py +++ b/egs/librispeech/ASR/zipformer_adapter/export-onnx.py @@ -27,11 +27,13 @@ 2. Export the model to ONNX -./zipformer/export-onnx.py \ +./zipformer_adapter/export-onnx.py \ --tokens $repo/data/lang_bpe_500/tokens.txt \ --use-averaged-model 0 \ --epoch 99 \ --avg 1 \ + --use-adapters 1 \ + --adapter-dim 32 \ --exp-dir $repo/exp \ --num-encoder-layers "2,2,3,4,3,2" \ --downsampling-factor "1,2,4,8,4,2" \ @@ -131,7 +133,7 @@ def get_parser(): parser.add_argument( "--exp-dir", type=str, - default="zipformer/exp", + default="zipformer_adapter/exp", help="""It specifies the directory where all training related files, e.g., checkpoints, log, etc, are saved """, diff --git a/egs/librispeech/ASR/zipformer_adapter/export.py b/egs/librispeech/ASR/zipformer_adapter/export.py new file mode 100755 index 0000000000..72dfc081b8 --- /dev/null +++ b/egs/librispeech/ASR/zipformer_adapter/export.py @@ -0,0 +1,520 @@ +#!/usr/bin/env python3 +# +# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang, +# Zengwei Yao, +# Wei Kang, +# Xiaoyu Yang) +# +# See ../../../../LICENSE for clarification regarding multiple authors +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This script converts several saved checkpoints +# to a single one using model averaging. +""" + +Usage: + +Note: This is a example for librispeech dataset, if you are using different +dataset, you should change the argument values according to your dataset. + +(1) Export to torchscript model using torch.jit.script() + +- For non-streaming model: + +./zipformer_adapter/export.py \ + --exp-dir ./zipformer_adapter/exp \ + --tokens data/lang_bpe_500/tokens.txt \ + --epoch 30 \ + --use-adapters 1 \ + --adapter-dim 16 \ + --avg 9 \ + --jit 1 + +It will generate a file `jit_script.pt` in the given `exp_dir`. You can later +load it by `torch.jit.load("jit_script.pt")`. + +Check ./jit_pretrained.py for its usage. + +Check https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +- For streaming model: + +./zipformer_adapter/export.py \ + --exp-dir ./zipformer_adapter/exp \ + --causal 1 \ + --chunk-size 16 \ + --left-context-frames 128 \ + --tokens data/lang_bpe_500/tokens.txt \ + --use-adapters 1 \ + --adapter-dim 16 \ + --epoch 30 \ + --avg 9 \ + --jit 1 + +It will generate a file `jit_script_chunk_16_left_128.pt` in the given `exp_dir`. +You can later load it by `torch.jit.load("jit_script_chunk_16_left_128.pt")`. + +Check ./jit_pretrained_streaming.py for its usage. + +Check https://github.com/k2-fsa/sherpa +for how to use the exported models outside of icefall. + +(2) Export `model.state_dict()` + +- For non-streaming model: + +./zipformer_adapter/export.py \ + --exp-dir ./zipformer_adapter/exp \ + --tokens data/lang_bpe_500/tokens.txt \ + --epoch 30 \ + --use-adapters 1 \ + --adapter-dim 16 \ + --avg 9 + +- For streaming model: + +./zipformer_adapter/export.py \ + --exp-dir ./zipformer_adapter/exp \ + --causal 1 \ + --tokens data/lang_bpe_500/tokens.txt \ + --use-adapters 1 \ + --adapter-dim 16 \ + --epoch 30 \ + --avg 9 + +It will generate a file `pretrained.pt` in the given `exp_dir`. You can later +load it by `icefall.checkpoint.load_checkpoint()`. + +- For non-streaming model: + +To use the generated file with `zipformer_adapter/decode.py`, +you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + ./zipformer_adapter/decode_gigaspeech.py \ + --exp-dir ./zipformer_adapter/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --use-adapters 1 \ + --adapter-dim 16 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +- For streaming model: + +To use the generated file with `zipformer_adapter/decode.py` and `zipformer_adapter/streaming_decode.py`, you can do: + + cd /path/to/exp_dir + ln -s pretrained.pt epoch-9999.pt + + cd /path/to/egs/librispeech/ASR + + # simulated streaming decoding + ./zipformer_adapter/decode_gigaspeech.py \ + --exp-dir ./zipformer_adapter/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --causal 1 \ + --chunk-size 16 \ + --left-context-frames 128 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + + # chunk-wise streaming decoding + ./zipformer_adapter/streaming_decode.py \ + --exp-dir ./zipformer_adapter/exp \ + --epoch 9999 \ + --avg 1 \ + --max-duration 600 \ + --causal 1 \ + --chunk-size 16 \ + --left-context-frames 128 \ + --decoding-method greedy_search \ + --bpe-model data/lang_bpe_500/bpe.model + +Check ./pretrained.py for its usage. + +""" + +import argparse +import logging +from pathlib import Path +from typing import List, Tuple + +import k2 +import torch +from scaling_converter import convert_scaled_to_non_scaled +from torch import Tensor, nn +from train import add_finetune_arguments, add_model_arguments, get_model, get_params + +from icefall.checkpoint import ( + average_checkpoints, + average_checkpoints_with_averaged_model, + find_checkpoints, + load_checkpoint, +) +from icefall.utils import make_pad_mask, num_tokens, str2bool + + +def get_parser(): + parser = argparse.ArgumentParser( + formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + + parser.add_argument( + "--epoch", + type=int, + default=30, + help="""It specifies the checkpoint to use for decoding. + Note: Epoch counts from 1. + You can specify --avg to use more checkpoints for model averaging.""", + ) + + parser.add_argument( + "--iter", + type=int, + default=0, + help="""If positive, --epoch is ignored and it + will use the checkpoint exp_dir/checkpoint-iter.pt. + You can specify --avg to use more checkpoints for model averaging. + """, + ) + + parser.add_argument( + "--avg", + type=int, + default=9, + help="Number of checkpoints to average. Automatically select " + "consecutive checkpoints before the checkpoint specified by " + "'--epoch' and '--iter'", + ) + + parser.add_argument( + "--use-averaged-model", + type=str2bool, + default=True, + help="Whether to load averaged model. Currently it only supports " + "using --epoch. If True, it would decode with the averaged model " + "over the epoch range from `epoch-avg` (excluded) to `epoch`." + "Actually only the models with epoch number of `epoch-avg` and " + "`epoch` are loaded for averaging. ", + ) + + parser.add_argument( + "--exp-dir", + type=str, + default="zipformer_adapter/exp", + help="""It specifies the directory where all training related + files, e.g., checkpoints, log, etc, are saved + """, + ) + + parser.add_argument( + "--tokens", + type=str, + default="data/lang_bpe_500/tokens.txt", + help="Path to the tokens.txt", + ) + + parser.add_argument( + "--jit", + type=str2bool, + default=False, + help="""True to save a model after applying torch.jit.script. + It will generate a file named jit_script.pt. + Check ./jit_pretrained.py for how to use it. + """, + ) + + parser.add_argument( + "--context-size", + type=int, + default=2, + help="The context size in the decoder. 1 means bigram; 2 means tri-gram", + ) + + add_model_arguments(parser) + add_finetune_arguments(parser) + + return parser + + +class EncoderModel(nn.Module): + """A wrapper for encoder and encoder_embed""" + + def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None: + super().__init__() + self.encoder = encoder + self.encoder_embed = encoder_embed + + def forward( + self, features: Tensor, feature_lengths: Tensor + ) -> Tuple[Tensor, Tensor]: + """ + Args: + features: (N, T, C) + feature_lengths: (N,) + """ + x, x_lens = self.encoder_embed(features, feature_lengths) + + src_key_padding_mask = make_pad_mask(x_lens) + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + + encoder_out, encoder_out_lens = self.encoder(x, x_lens, src_key_padding_mask) + encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + return encoder_out, encoder_out_lens + + +class StreamingEncoderModel(nn.Module): + """A wrapper for encoder and encoder_embed""" + + def __init__(self, encoder: nn.Module, encoder_embed: nn.Module) -> None: + super().__init__() + assert len(encoder.chunk_size) == 1, encoder.chunk_size + assert len(encoder.left_context_frames) == 1, encoder.left_context_frames + self.chunk_size = encoder.chunk_size[0] + self.left_context_len = encoder.left_context_frames[0] + + # The encoder_embed subsample features (T - 7) // 2 + # The ConvNeXt module needs (7 - 1) // 2 = 3 frames of right padding after subsampling + self.pad_length = 7 + 2 * 3 + + self.encoder = encoder + self.encoder_embed = encoder_embed + + def forward( + self, features: Tensor, feature_lengths: Tensor, states: List[Tensor] + ) -> Tuple[Tensor, Tensor, List[Tensor]]: + """Streaming forward for encoder_embed and encoder. + + Args: + features: (N, T, C) + feature_lengths: (N,) + states: a list of Tensors + + Returns encoder outputs, output lengths, and updated states. + """ + chunk_size = self.chunk_size + left_context_len = self.left_context_len + + cached_embed_left_pad = states[-2] + x, x_lens, new_cached_embed_left_pad = self.encoder_embed.streaming_forward( + x=features, + x_lens=feature_lengths, + cached_left_pad=cached_embed_left_pad, + ) + assert x.size(1) == chunk_size, (x.size(1), chunk_size) + + src_key_padding_mask = make_pad_mask(x_lens) + + # processed_mask is used to mask out initial states + processed_mask = torch.arange(left_context_len, device=x.device).expand( + x.size(0), left_context_len + ) + processed_lens = states[-1] # (batch,) + # (batch, left_context_size) + processed_mask = (processed_lens.unsqueeze(1) <= processed_mask).flip(1) + # Update processed lengths + new_processed_lens = processed_lens + x_lens + + # (batch, left_context_size + chunk_size) + src_key_padding_mask = torch.cat([processed_mask, src_key_padding_mask], dim=1) + + x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) + encoder_states = states[:-2] + + ( + encoder_out, + encoder_out_lens, + new_encoder_states, + ) = self.encoder.streaming_forward( + x=x, + x_lens=x_lens, + states=encoder_states, + src_key_padding_mask=src_key_padding_mask, + ) + encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C) + + new_states = new_encoder_states + [ + new_cached_embed_left_pad, + new_processed_lens, + ] + return encoder_out, encoder_out_lens, new_states + + @torch.jit.export + def get_init_states( + self, + batch_size: int = 1, + device: torch.device = torch.device("cpu"), + ) -> List[torch.Tensor]: + """ + Returns a list of cached tensors of all encoder layers. For layer-i, states[i*6:(i+1)*6] + is (cached_key, cached_nonlin_attn, cached_val1, cached_val2, cached_conv1, cached_conv2). + states[-2] is the cached left padding for ConvNeXt module, + of shape (batch_size, num_channels, left_pad, num_freqs) + states[-1] is processed_lens of shape (batch,), which records the number + of processed frames (at 50hz frame rate, after encoder_embed) for each sample in batch. + """ + states = self.encoder.get_init_states(batch_size, device) + + embed_states = self.encoder_embed.get_init_states(batch_size, device) + states.append(embed_states) + + processed_lens = torch.zeros(batch_size, dtype=torch.int32, device=device) + states.append(processed_lens) + + return states + + +@torch.no_grad() +def main(): + args = get_parser().parse_args() + args.exp_dir = Path(args.exp_dir) + + params = get_params() + params.update(vars(args)) + + device = torch.device("cpu") + + logging.info(f"device: {device}") + + token_table = k2.SymbolTable.from_file(params.tokens) + params.blank_id = token_table[""] + params.vocab_size = num_tokens(token_table) + 1 + + logging.info(params) + + logging.info("About to create model") + model = get_model(params) + + if not params.use_averaged_model: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames, device=device)) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + start = params.epoch - params.avg + 1 + filenames = [] + for i in range(start, params.epoch + 1): + if i >= 1: + filenames.append(f"{params.exp_dir}/epoch-{i}.pt") + logging.info(f"averaging {filenames}") + model.load_state_dict(average_checkpoints(filenames, device=device)) + else: + if params.iter > 0: + filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ + : params.avg + 1 + ] + if len(filenames) == 0: + raise ValueError( + f"No checkpoints found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + elif len(filenames) < params.avg + 1: + raise ValueError( + f"Not enough checkpoints ({len(filenames)}) found for" + f" --iter {params.iter}, --avg {params.avg}" + ) + filename_start = filenames[-1] + filename_end = filenames[0] + logging.info( + "Calculating the averaged model over iteration checkpoints" + f" from {filename_start} (excluded) to {filename_end}" + ) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + elif params.avg == 1: + load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) + else: + assert params.avg > 0, params.avg + start = params.epoch - params.avg + assert start >= 1, start + filename_start = f"{params.exp_dir}/epoch-{start}.pt" + filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" + logging.info( + f"Calculating the averaged model over epoch range from " + f"{start} (excluded) to {params.epoch}" + ) + model.load_state_dict( + average_checkpoints_with_averaged_model( + filename_start=filename_start, + filename_end=filename_end, + device=device, + ) + ) + + model.eval() + + if params.jit is True: + convert_scaled_to_non_scaled(model, inplace=True) + # We won't use the forward() method of the model in C++, so just ignore + # it here. + # Otherwise, one of its arguments is a ragged tensor and is not + # torch scriptabe. + model.__class__.forward = torch.jit.ignore(model.__class__.forward) + + # Wrap encoder and encoder_embed as a module + if params.causal: + model.encoder = StreamingEncoderModel(model.encoder, model.encoder_embed) + chunk_size = model.encoder.chunk_size + left_context_len = model.encoder.left_context_len + filename = f"jit_script_chunk_{chunk_size}_left_{left_context_len}.pt" + else: + model.encoder = EncoderModel(model.encoder, model.encoder_embed) + filename = "jit_script.pt" + + logging.info("Using torch.jit.script") + model = torch.jit.script(model) + model.save(str(params.exp_dir / filename)) + logging.info(f"Saved to {filename}") + else: + logging.info("Not using torchscript. Export model.state_dict()") + # Save it using a format so that it can be loaded + # by :func:`load_checkpoint` + filename = params.exp_dir / "pretrained.pt" + torch.save({"model": model.state_dict()}, str(filename)) + logging.info(f"Saved to {filename}") + + +if __name__ == "__main__": + formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" + + logging.basicConfig(format=formatter, level=logging.INFO) + main() diff --git a/egs/librispeech/ASR/zipformer_adapter/zipformer.py b/egs/librispeech/ASR/zipformer_adapter/zipformer.py index 4e4695fa53..8e2dfdd72c 100644 --- a/egs/librispeech/ASR/zipformer_adapter/zipformer.py +++ b/egs/librispeech/ASR/zipformer_adapter/zipformer.py @@ -1004,6 +1004,9 @@ def streaming_forward( ) src = src + self_attn + if self.use_adapters and self.post_sa_adapter is not None: + src = self.post_sa_adapter(src) + src_conv, cached_conv1 = self.conv_module1.streaming_forward( src, cache=cached_conv1, @@ -1016,6 +1019,9 @@ def streaming_forward( # bypass in the middle of the layer. src = self.bypass_mid(src_orig, src) + if self.use_adapters and self.mid_adapter is not None: + src = self.mid_adapter(src) + self_attn, cached_val2 = self.self_attn2.streaming_forward( src, attn_weights=attn_weights, @@ -1031,12 +1037,18 @@ def streaming_forward( ) src = src + src_conv + if self.use_adapters and self.post_conv_adapter is not None: + src = self.post_conv_adapter(src) + src = src + self.feed_forward3(src) src = self.norm(src) src = self.bypass(src_orig, src) + if self.use_adapters and self.adapter is not None: + src = self.adapter(src) + return ( src, cached_key,