-
Notifications
You must be signed in to change notification settings - Fork 304
/
prepare.sh
executable file
·463 lines (392 loc) · 15.7 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=-1
stop_stage=100
# We assume dl_dir (download dir) contains the following
# directories and files. Most of them can't be downloaded automatically
# as they are not publically available and require a license purchased
# from the LDC.
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=./download
# swbd1_dir="/export/corpora3/LDC/LDC97S62"
swbd1_dir=./download/LDC97S62/
# eval2000_dir contains the following files and directories
# downloaded from LDC website:
# - LDC2002S09
# - hub5e_00
# - LDC2002T43
# - reference
eval2000_dir="/export/corpora2/LDC/eval2000"
rt03_dir="/export/corpora/LDC/LDC2007S10"
fisher_dir="/export/corpora3/LDC/LDC2004T19"
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "swbd1_dir: $swbd1_dir"
log "eval2000_dir: $eval2000_dir"
log "rt03_dir: $rt03_dir"
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare SwitchBoard manifest"
# We assume that you have downloaded the SwitchBoard corpus
# to respective dirs
mkdir -p data/manifests
if [ ! -e data/manifests/.swbd.done ]; then
lhotse prepare switchboard --absolute-paths 1 --omit-silence $swbd1_dir data/manifests/swbd
./local/normalize_and_filter_supervisions.py \
data/manifests/swbd/swbd_supervisions_all.jsonl.gz \
data/manifests/swbd/swbd_supervisions_all_norm.jsonl.gz
mv data/manifests/swbd/swbd_supervisions_all.jsonl.gz data/manifests/swbd/swbd_supervisions_orig.jsonl.gz
mv data/manifests/swbd/swbd_supervisions_all_norm.jsonl.gz data/manifests/swbd/swbd_supervisions_all.jsonl.gz
lhotse cut simple \
-r data/manifests/swbd/swbd_recordings_all.jsonl.gz \
-s data/manifests/swbd/swbd_supervisions_all.jsonl.gz \
data/manifests/swbd/swbd_train_all.jsonl.gz
lhotse cut trim-to-supervisions \
--discard-overlapping \
--discard-extra-channels \
data/manifests/swbd/swbd_train_all.jsonl.gz \
data/manifests/swbd/swbd_train_all_trimmed.jsonl.gz
num_splits=16
mkdir -p data/manifests/swbd_split${num_splits}
lhotse split ${num_splits} \
data/manifests/swbd/swbd_train_all_trimmed.jsonl.gz \
data/manifests/swbd_split${num_splits}
lhotse prepare eval2000 --absolute-paths 1 $eval2000_dir data/manifests/eval2000
./local/normalize_eval2000.py \
data/manifests/eval2000/eval2000_supervisions_unnorm.jsonl.gz \
data/manifests/eval2000/eval2000_supervisions_all.jsonl.gz
lhotse cut simple \
-r data/manifests/eval2000/eval2000_recordings_all.jsonl.gz \
-s data/manifests/eval2000/eval2000_supervisions_all.jsonl.gz \
data/manifests/eval2000/eval2000_cuts_all.jsonl.gz
lhotse cut trim-to-supervisions \
--discard-overlapping \
--discard-extra-channels \
data/manifests/eval2000/eval2000_cuts_all.jsonl.gz \
data/manifests/eval2000/eval2000_cuts_all_trimmed.jsonl.gz
sed -e 's:((:(:' -e 's:<B_ASIDE>::g' -e 's:<E_ASIDE>::g' \
$eval2000_dir/LDC2002T43/reference/hub5e00.english.000405.stm > data/manifests/eval2000/stm
cp $eval2000_dir/LDC2002T43/reference/en20000405_hub5.glm $dir/glm
# ./local/rt03_data_prep.sh $rt03_dir
# normalize eval2000 and rt03 texts by
# 1) convert upper to lower
# 2) remove tags (%AH) (%HESITATION) (%UH)
# 3) remove <B_ASIDE> <E_ASIDE>
# 4) remove "(" or ")"
# for x in rt03; do
# cp data/local/${x}/text data/local/${x}/text.org
# paste -d "" \
# <(cut -f 1 -d" " data/local/${x}/text.org) \
# <(awk '{$1=""; print tolower($0)}' data/local/${x}/text.org | perl -pe 's| \(\%.*\)||g' | perl -pe 's| \<.*\>||g' | sed -e "s/(//g" -e "s/)//g") |
# sed -e 's/\s\+/ /g' >data/local/${x}/text
# rm data/local/${x}/text.org
# done
# lhotse fix data/manifests_rt03/swbd_recordings_rt03.jsonl.gz data/manifests_rt03/swbd_supervisions_rt03.jsonl.gz data/manifests
touch data/manifests/.swbd.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to $dl_dir/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3 I: Compute fbank for SwitchBoard"
if [ ! -e data/fbank/.swbd.done ]; then
mkdir -p data/fbank/swbd_split${num_splits}/
for index in $(seq 1 16); do
./local/compute_fbank_swbd.py --split-index ${index} &
done
wait
pieces=$(find data/fbank/swbd_split${num_splits} -name "swbd_cuts_all.*.jsonl.gz")
lhotse combine $pieces data/fbank/swbd_cuts_all.jsonl.gz
touch data/fbank/.swbd.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3 II: Compute fbank for eval2000"
if [ ! -e data/fbank/.eval2000.done ]; then
mkdir -p data/fbank/eval2000/
./local/compute_fbank_eval2000.py
touch data/fbank/.eval2000.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Prepare phone based lang"
lang_dir=data/lang_phone
mkdir -p $lang_dir
if ! which jq; then
echo "This script is intended to be used with jq but you have not installed jq
Note: in Linux, you can install jq with the following command:
1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
2. chmod +x ./jq
3. cp jq /usr/bin" && exit 1
fi
if [ ! -f $lang_dir/text ] || [ ! -s $lang_dir/text ]; then
log "Prepare text."
gunzip -c data/manifests/swbd/swbd_supervisions_all.jsonl.gz \
| jq '.text' | sed 's/"//g' > $lang_dir/text
fi
log "Prepare dict"
./local/swbd1_prepare_dict.sh
cut -f 2- -d" " $lang_dir/text >${lang_dir}/input.txt
# [noise] nsn
# !sil sil
# <unk> spn
cat data/local/dict_nosp/lexicon.txt | sed 's/-//g' | sed 's/\[vocalizednoise\]/\[vocalized-noise\]/g' |
sort | uniq >$lang_dir/lexicon_lower.txt
cat $lang_dir/lexicon_lower.txt | tr a-z A-Z > $lang_dir/lexicon.txt
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
# We reuse words.txt from phone based lexicon
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
cat data/lang_phone/text | cut -d " " -f 2- >$lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare bigram token-level P for MMI training"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_dir/lexicon.txt \
--transcript $lang_dir/transcript_words.txt \
--oov "<UNK>" \
>$lang_dir/transcript_tokens.txt
fi
if [ ! -f $lang_dir/P.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/P.arpa
fi
if [ ! -f $lang_dir/P.fst.txt ]; then
python3 -m kaldilm \
--read-symbol-table="$lang_dir/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
$lang_dir/P.arpa >$lang_dir/P.fst.txt
fi
done
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare G"
lang_dir=data/lang_phone
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building HLG
./shared/make_kn_lm.py \
-ngram-order 3 \
-text ${lang_dir}/input.txt \
-lm data/lm/3-gram.arpa
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
data/lm/3-gram.arpa >data/lm/G_3_gram.fst.txt
fi
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
# It is used for LM rescoring
./shared/make_kn_lm.py \
-ngram-order 4 \
-text ${lang_dir}/input.txt \
-lm data/lm/4-gram.arpa
python3 -m kaldilm \
--read-symbol-table="data/lang_phone/words.txt" \
--disambig-symbol='#0' \
--max-order=4 \
data/lm/4-gram.arpa >data/lm/G_4_gram.fst.txt
fi
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compile HLG"
./local/compile_hlg.py --lang-dir data/lang_phone
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_hlg.py --lang-dir $lang_dir
# Note If ./local/compile_hlg.py throws OOM,
# please switch to the following command
#
# ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir
done
fi
# Compile LG for RNN-T fast_beam_search decoding
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Compile LG"
./local/compile_lg.py --lang-dir data/lang_phone
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
./local/compile_lg.py --lang-dir $lang_dir
done
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Generate LM training data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
lang_dir=data/lang_bpe_${vocab_size}
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/train.txt ]; then
tail -n 250000 data/lang_phone/input.txt > $out_dir/train.txt
fi
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data data/lang_phone/input.txt \
--lm-archive $out_dir/lm_data.pt
done
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Generate LM validation data"
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/valid.txt ]; then
head -n 14332 data/lang_phone/input.txt > $out_dir/valid.txt
fi
lang_dir=data/lang_bpe_${vocab_size}
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $out_dir/valid.txt \
--lm-archive $out_dir/lm_data-valid.pt
done
fi
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
log "Stage 13: Generate LM test data"
testsets=(eval2000)
for testset in ${testsets[@]}; do
for vocab_size in ${vocab_sizes[@]}; do
log "Processing vocab_size == ${vocab_size}"
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
if [ ! -f $out_dir/${testset}.txt ]; then
gunzip -c data/manifests/${testset}/eval2000_supervisions_all.jsonl.gz \
| jq '.text' | sed 's/"//g' > $out_dir/${testset}.txt
fi
lang_dir=data/lang_bpe_${vocab_size}
./local/prepare_lm_training_data.py \
--bpe-model $lang_dir/bpe.model \
--lm-data $out_dir/${testset}.txt \
--lm-archive $out_dir/lm_data-${testset}.pt
done
done
fi
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
log "Stage 14: Sort LM training data"
testsets=(eval2000)
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of BPE tokens
# in a sentence.
for vocab_size in ${vocab_sizes[@]}; do
out_dir=data/lm_training_bpe_${vocab_size}
mkdir -p $out_dir
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
for testset in ${testsets[@]}; do
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data-${testset}.pt \
--out-lm-data $out_dir/sorted_lm_data-${testset}.pt \
--out-statistics $out_dir/statistics-test-${testset}.txt
done
done
fi