-
Notifications
You must be signed in to change notification settings - Fork 305
/
beam_search.py
3183 lines (2681 loc) · 107 KB
/
beam_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union
import k2
import sentencepiece as spm
import torch
from torch import nn
from icefall import ContextGraph, ContextState, NgramLm, NgramLmStateCost
from icefall.decode import Nbest, one_best_decoding
from icefall.lm_wrapper import LmScorer
from icefall.rnn_lm.model import RnnLmModel
from icefall.transformer_lm.model import TransformerLM
from icefall.utils import (
DecodingResults,
KeywordResult,
add_eos,
add_sos,
get_texts,
get_texts_with_timestamp,
)
def fast_beam_search_one_best(
model: nn.Module,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
temperature: float = 1.0,
ilme_scale: float = 0.0,
blank_penalty: float = 0.0,
return_timestamps: bool = False,
allow_partial: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first obtained using fast beam search, and then
the shortest path within the lattice is used as the final output.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a LG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
temperature:
Softmax temperature.
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
temperature=temperature,
ilme_scale=ilme_scale,
allow_partial=allow_partial,
blank_penalty=blank_penalty,
)
best_path = one_best_decoding(lattice)
if not return_timestamps:
return get_texts(best_path)
else:
return get_texts_with_timestamp(best_path)
def fast_beam_search_nbest_LG(
model: nn.Module,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
num_paths: int,
nbest_scale: float = 0.5,
use_double_scores: bool = True,
temperature: float = 1.0,
blank_penalty: float = 0.0,
ilme_scale: float = 0.0,
return_timestamps: bool = False,
allow_partial: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""It limits the maximum number of symbols per frame to 1.
The process to get the results is:
- (1) Use fast beam search to get a lattice
- (2) Select `num_paths` paths from the lattice using k2.random_paths()
- (3) Unique the selected paths
- (4) Intersect the selected paths with the lattice and compute the
shortest path from the intersection result
- (5) The path with the largest score is used as the decoding output.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a LG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
num_paths:
Number of paths to extract from the decoded lattice.
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
use_double_scores:
True to use double precision for computation. False to use
single precision.
temperature:
Softmax temperature.
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
temperature=temperature,
allow_partial=allow_partial,
blank_penalty=blank_penalty,
ilme_scale=ilme_scale,
)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
# The following code is modified from nbest.intersect()
word_fsa = k2.invert(nbest.fsa)
if hasattr(lattice, "aux_labels"):
# delete token IDs as it is not needed
del word_fsa.aux_labels
word_fsa.scores.zero_()
word_fsa_with_epsilon_loops = k2.linear_fsa_with_self_loops(word_fsa)
path_to_utt_map = nbest.shape.row_ids(1)
if hasattr(lattice, "aux_labels"):
# lattice has token IDs as labels and word IDs as aux_labels.
# inv_lattice has word IDs as labels and token IDs as aux_labels
inv_lattice = k2.invert(lattice)
inv_lattice = k2.arc_sort(inv_lattice)
else:
inv_lattice = k2.arc_sort(lattice)
if inv_lattice.shape[0] == 1:
path_lattice = k2.intersect_device(
inv_lattice,
word_fsa_with_epsilon_loops,
b_to_a_map=torch.zeros_like(path_to_utt_map),
sorted_match_a=True,
)
else:
path_lattice = k2.intersect_device(
inv_lattice,
word_fsa_with_epsilon_loops,
b_to_a_map=path_to_utt_map,
sorted_match_a=True,
)
# path_lattice has word IDs as labels and token IDs as aux_labels
path_lattice = k2.top_sort(k2.connect(path_lattice))
tot_scores = path_lattice.get_tot_scores(
use_double_scores=use_double_scores,
log_semiring=True, # Note: we always use True
)
# See https://github.com/k2-fsa/icefall/pull/420 for why
# we always use log_semiring=True
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
best_hyp_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, best_hyp_indexes)
if not return_timestamps:
return get_texts(best_path)
else:
return get_texts_with_timestamp(best_path)
def fast_beam_search_nbest(
model: nn.Module,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
num_paths: int,
nbest_scale: float = 0.5,
use_double_scores: bool = True,
temperature: float = 1.0,
blank_penalty: float = 0.0,
return_timestamps: bool = False,
allow_partial: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""It limits the maximum number of symbols per frame to 1.
The process to get the results is:
- (1) Use fast beam search to get a lattice
- (2) Select `num_paths` paths from the lattice using k2.random_paths()
- (3) Unique the selected paths
- (4) Intersect the selected paths with the lattice and compute the
shortest path from the intersection result
- (5) The path with the largest score is used as the decoding output.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a LG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
num_paths:
Number of paths to extract from the decoded lattice.
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
use_double_scores:
True to use double precision for computation. False to use
single precision.
temperature:
Softmax temperature.
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
blank_penalty=blank_penalty,
temperature=temperature,
allow_partial=allow_partial,
)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
# at this point, nbest.fsa.scores are all zeros.
nbest = nbest.intersect(lattice)
# Now nbest.fsa.scores contains acoustic scores
max_indexes = nbest.tot_scores().argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
if not return_timestamps:
return get_texts(best_path)
else:
return get_texts_with_timestamp(best_path)
def fast_beam_search_nbest_oracle(
model: nn.Module,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
num_paths: int,
ref_texts: List[List[int]],
use_double_scores: bool = True,
nbest_scale: float = 0.5,
temperature: float = 1.0,
blank_penalty: float = 0.0,
return_timestamps: bool = False,
allow_partial: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""It limits the maximum number of symbols per frame to 1.
A lattice is first obtained using fast beam search, and then
we select `num_paths` linear paths from the lattice. The path
that has the minimum edit distance with the given reference transcript
is used as the output.
This is the best result we can achieve for any nbest based rescoring
methods.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a LG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
num_paths:
Number of paths to extract from the decoded lattice.
ref_texts:
A list-of-list of integers containing the reference transcripts.
If the decoding_graph is a trivial_graph, the integer ID is the
BPE token ID.
use_double_scores:
True to use double precision for computation. False to use
single precision.
nbest_scale:
It's the scale applied to the lattice.scores. A smaller value
yields more unique paths.
temperature:
Softmax temperature.
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
lattice = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=beam,
max_states=max_states,
max_contexts=max_contexts,
temperature=temperature,
allow_partial=allow_partial,
blank_penalty=blank_penalty,
)
nbest = Nbest.from_lattice(
lattice=lattice,
num_paths=num_paths,
use_double_scores=use_double_scores,
nbest_scale=nbest_scale,
)
hyps = nbest.build_levenshtein_graphs()
refs = k2.levenshtein_graph(ref_texts, device=hyps.device)
levenshtein_alignment = k2.levenshtein_alignment(
refs=refs,
hyps=hyps,
hyp_to_ref_map=nbest.shape.row_ids(1),
sorted_match_ref=True,
)
tot_scores = levenshtein_alignment.get_tot_scores(
use_double_scores=False, log_semiring=False
)
ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
max_indexes = ragged_tot_scores.argmax()
best_path = k2.index_fsa(nbest.fsa, max_indexes)
if not return_timestamps:
return get_texts(best_path)
else:
return get_texts_with_timestamp(best_path)
def fast_beam_search(
model: nn.Module,
decoding_graph: k2.Fsa,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
beam: float,
max_states: int,
max_contexts: int,
temperature: float = 1.0,
subtract_ilme: bool = False,
ilme_scale: float = 0.1,
allow_partial: bool = False,
blank_penalty: float = 0.0,
) -> k2.Fsa:
"""It limits the maximum number of symbols per frame to 1.
Args:
model:
An instance of `Transducer`.
decoding_graph:
Decoding graph used for decoding, may be a TrivialGraph or a LG.
encoder_out:
A tensor of shape (N, T, C) from the encoder.
encoder_out_lens:
A tensor of shape (N,) containing the number of frames in `encoder_out`
before padding.
beam:
Beam value, similar to the beam used in Kaldi..
max_states:
Max states per stream per frame.
max_contexts:
Max contexts pre stream per frame.
temperature:
Softmax temperature.
Returns:
Return an FsaVec with axes [utt][state][arc] containing the decoded
lattice. Note: When the input graph is a TrivialGraph, the returned
lattice is actually an acceptor.
"""
assert encoder_out.ndim == 3
context_size = model.decoder.context_size
vocab_size = model.decoder.vocab_size
B, T, C = encoder_out.shape
config = k2.RnntDecodingConfig(
vocab_size=vocab_size,
decoder_history_len=context_size,
beam=beam,
max_contexts=max_contexts,
max_states=max_states,
)
individual_streams = []
for i in range(B):
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
encoder_out = model.joiner.encoder_proj(encoder_out)
for t in range(T):
# shape is a RaggedShape of shape (B, context)
# contexts is a Tensor of shape (shape.NumElements(), context_size)
shape, contexts = decoding_streams.get_contexts()
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
contexts = contexts.to(torch.int64)
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
decoder_out = model.decoder(contexts, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
# current_encoder_out is of shape
# (shape.NumElements(), 1, joiner_dim)
# fmt: off
current_encoder_out = torch.index_select(
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
)
# fmt: on
logits = model.joiner(
current_encoder_out.unsqueeze(2),
decoder_out.unsqueeze(1),
project_input=False,
)
logits = logits.squeeze(1).squeeze(1)
if blank_penalty != 0:
logits[:, 0] -= blank_penalty
log_probs = (logits / temperature).log_softmax(dim=-1)
if ilme_scale != 0:
ilme_logits = model.joiner(
torch.zeros_like(
current_encoder_out, device=current_encoder_out.device
).unsqueeze(2),
decoder_out.unsqueeze(1),
project_input=False,
)
ilme_logits = ilme_logits.squeeze(1).squeeze(1)
if blank_penalty != 0:
ilme_logits[:, 0] -= blank_penalty
ilme_log_probs = (ilme_logits / temperature).log_softmax(dim=-1)
log_probs -= ilme_scale * ilme_log_probs
decoding_streams.advance(log_probs)
decoding_streams.terminate_and_flush_to_streams()
lattice = decoding_streams.format_output(
encoder_out_lens.tolist(), allow_partial=allow_partial
)
return lattice
def greedy_search(
model: nn.Module,
encoder_out: torch.Tensor,
max_sym_per_frame: int,
blank_penalty: float = 0.0,
return_timestamps: bool = False,
) -> Union[List[int], DecodingResults]:
"""Greedy search for a single utterance.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
max_sym_per_frame:
Maximum number of symbols per frame. If it is set to 0, the WER
would be 100%.
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
context_size = model.decoder.context_size
unk_id = getattr(model, "unk_id", blank_id)
device = next(model.parameters()).device
decoder_input = torch.tensor(
[-1] * (context_size - 1) + [blank_id], device=device, dtype=torch.int64
).reshape(1, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
encoder_out = model.joiner.encoder_proj(encoder_out)
T = encoder_out.size(1)
t = 0
hyp = [blank_id] * context_size
# timestamp[i] is the frame index after subsampling
# on which hyp[i] is decoded
timestamp = []
# Maximum symbols per utterance.
max_sym_per_utt = 1000
# symbols per frame
sym_per_frame = 0
# symbols per utterance decoded so far
sym_per_utt = 0
while t < T and sym_per_utt < max_sym_per_utt:
if sym_per_frame >= max_sym_per_frame:
sym_per_frame = 0
t += 1
continue
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
# fmt: on
logits = model.joiner(
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
)
# logits is (1, 1, 1, vocab_size)
if blank_penalty != 0:
logits[:, :, :, 0] -= blank_penalty
y = logits.argmax().item()
if y not in (blank_id, unk_id):
hyp.append(y)
timestamp.append(t)
decoder_input = torch.tensor([hyp[-context_size:]], device=device).reshape(
1, context_size
)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
sym_per_utt += 1
sym_per_frame += 1
else:
sym_per_frame = 0
t += 1
hyp = hyp[context_size:] # remove blanks
if not return_timestamps:
return hyp
else:
return DecodingResults(
hyps=[hyp],
timestamps=[timestamp],
)
def greedy_search_batch(
model: nn.Module,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
blank_penalty: float = 0,
return_timestamps: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C), where N >= 1.
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
assert encoder_out.ndim == 3
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
device = next(model.parameters()).device
blank_id = model.decoder.blank_id
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
hyps = [[-1] * (context_size - 1) + [blank_id] for _ in range(N)]
# timestamp[n][i] is the frame index after subsampling
# on which hyp[n][i] is decoded
timestamps = [[] for _ in range(N)]
# scores[n][i] is the logits on which hyp[n][i] is decoded
scores = [[] for _ in range(N)]
decoder_input = torch.tensor(
hyps,
device=device,
dtype=torch.int64,
) # (N, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out: (N, 1, decoder_out_dim)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
for t, batch_size in enumerate(batch_size_list):
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
offset = end
decoder_out = decoder_out[:batch_size]
logits = model.joiner(
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
)
# logits'shape (batch_size, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
assert logits.ndim == 2, logits.shape
if blank_penalty != 0:
logits[:, 0] -= blank_penalty
y = logits.argmax(dim=1).tolist()
emitted = False
for i, v in enumerate(y):
if v not in (blank_id, unk_id):
hyps[i].append(v)
timestamps[i].append(t)
scores[i].append(logits[i, v].item())
emitted = True
if emitted:
# update decoder output
decoder_input = [h[-context_size:] for h in hyps[:batch_size]]
decoder_input = torch.tensor(
decoder_input,
device=device,
dtype=torch.int64,
)
decoder_out = model.decoder(decoder_input, need_pad=False)
decoder_out = model.joiner.decoder_proj(decoder_out)
sorted_ans = [h[context_size:] for h in hyps]
ans = []
ans_timestamps = []
ans_scores = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
ans_timestamps.append(timestamps[unsorted_indices[i]])
ans_scores.append(scores[unsorted_indices[i]])
if not return_timestamps:
return ans
else:
return DecodingResults(
hyps=ans,
timestamps=ans_timestamps,
scores=ans_scores,
)
@dataclass
class Hypothesis:
# The predicted tokens so far.
# Newly predicted tokens are appended to `ys`.
ys: List[int]
# The log prob of ys.
# It contains only one entry.
log_prob: torch.Tensor
ac_probs: Optional[List[float]] = None
# timestamp[i] is the frame index after subsampling
# on which ys[i] is decoded
timestamp: List[int] = field(default_factory=list)
# the lm score for next token given the current ys
lm_score: Optional[torch.Tensor] = None
# the RNNLM states (h and c in LSTM)
state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
# N-gram LM state
state_cost: Optional[NgramLmStateCost] = None
# Context graph state
context_state: Optional[ContextState] = None
num_tailing_blanks: int = 0
@property
def key(self) -> str:
"""Return a string representation of self.ys"""
return "_".join(map(str, self.ys))
class HypothesisList(object):
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
"""
Args:
data:
A dict of Hypotheses. Its key is its `value.key`.
"""
if data is None:
self._data = {}
else:
self._data = data
@property
def data(self) -> Dict[str, Hypothesis]:
return self._data
def add(self, hyp: Hypothesis) -> None:
"""Add a Hypothesis to `self`.
If `hyp` already exists in `self`, its probability is updated using
`log-sum-exp` with the existed one.
Args:
hyp:
The hypothesis to be added.
"""
key = hyp.key
if key in self:
old_hyp = self._data[key] # shallow copy
torch.logaddexp(old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob)
else:
self._data[key] = hyp
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
"""Get the most probable hypothesis, i.e., the one with
the largest `log_prob`.
Args:
length_norm:
If True, the `log_prob` of a hypothesis is normalized by the
number of tokens in it.
Returns:
Return the hypothesis that has the largest `log_prob`.
"""
if length_norm:
return max(self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys))
else:
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
def remove(self, hyp: Hypothesis) -> None:
"""Remove a given hypothesis.
Caution:
`self` is modified **in-place**.
Args:
hyp:
The hypothesis to be removed from `self`.
Note: It must be contained in `self`. Otherwise,
an exception is raised.
"""
key = hyp.key
assert key in self, f"{key} does not exist"
del self._data[key]
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
"""Remove all Hypotheses whose log_prob is less than threshold.
Caution:
`self` is not modified. Instead, a new HypothesisList is returned.
Returns:
Return a new HypothesisList containing all hypotheses from `self`
with `log_prob` being greater than the given `threshold`.
"""
ans = HypothesisList()
for _, hyp in self._data.items():
if hyp.log_prob > threshold:
ans.add(hyp) # shallow copy
return ans
def topk(self, k: int, length_norm: bool = False) -> "HypothesisList":
"""Return the top-k hypothesis.
Args:
length_norm:
If True, the `log_prob` of a hypothesis is normalized by the
number of tokens in it.
"""
hyps = list(self._data.items())
if length_norm:
hyps = sorted(
hyps, key=lambda h: h[1].log_prob / len(h[1].ys), reverse=True
)[:k]
else:
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
ans = HypothesisList(dict(hyps))
return ans
def __contains__(self, key: str):
return key in self._data
def __iter__(self):
return iter(self._data.values())
def __len__(self) -> int:
return len(self._data)
def __str__(self) -> str:
s = []
for key in self:
s.append(key)
return ", ".join(s)
def get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
"""Return a ragged shape with axes [utt][num_hyps].
Args:
hyps:
len(hyps) == batch_size. It contains the current hypothesis for
each utterance in the batch.
Returns:
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
the shape is on CPU.
"""
num_hyps = [len(h) for h in hyps]
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
# to get exclusive sum later.
num_hyps.insert(0, 0)
num_hyps = torch.tensor(num_hyps)
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
ans = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
)
return ans
def keywords_search(
model: nn.Module,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
keywords_graph: ContextGraph,
beam: int = 4,
num_tailing_blanks: int = 0,
blank_penalty: float = 0,
) -> List[List[KeywordResult]]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
keywords_graph:
A instance of ContextGraph containing keywords and their configurations.
beam:
Number of active paths during the beam search.
num_tailing_blanks:
The number of tailing blanks a keyword should be followed, this is for the
scenario that a keyword will be the prefix of another. In most cases, you
can just set it to 0.
blank_penalty:
The score used to penalize blank probability.
Returns:
Return a list of list of KeywordResult.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
assert keywords_graph is not None
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),