forked from akashe/Multimodal-action-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
140 lines (108 loc) · 5.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn as nn
import yaml
import argparse
import logging
from functools import partial
from utils import get_Dataset_and_vocabs, collate_fn, train, evaluate, initialize_weights, count_parameters, epoch_time
from utils import add_to_writer
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import Model
import time, datetime, os,sys
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s | %(levelname)s | %(message)s',
'%m-%d-%Y %H:%M:%S')
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setLevel(logging.INFO)
stdout_handler.setFormatter(formatter)
file_handler = logging.FileHandler('logs/train_logs_'+str(datetime.datetime.now())[:-7]+'.log')
stdout_handler.setLevel(logging.INFO)
stdout_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stdout_handler)
# runner loop
def runner(epochs, model, train_iterator, valid_iterator, optim, writer, config):
clip, save_path, model_name = config["clip"], config['data']['path'], config['model_name']
best_valid_loss = float('inf')
for epoch in range(epochs):
start_time = time.time()
train_loss, train_stats = train(model, train_iterator, optim, clip)
valid_loss, valid_stats = evaluate(model, valid_iterator)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), os.path.join(save_path , model_name))
logger.info("-------------------------")
logger.info(f'Epoch: {epoch + 1:02} | Time: {epoch_mins}m {epoch_secs}s')
logger.info(f'\tTrain Loss: {train_loss:.3f}')
logger.info(f'\t Val. Loss: {valid_loss:.3f}')
logger.info(f'\t Train f1: {train_stats[0]} \n Valid f1: {valid_stats[0]}')
logger.info(f'\t Train action accuracy: {train_stats[1]:.3f} \t Valid action accuracy: {valid_stats[1]:.3f}')
logger.info(f'\t Train object accuracy: {train_stats[2]:.3f} \t Valid object accuracy: {valid_stats[2]:.3f}')
logger.info(
f'\t Train location accuracy: {train_stats[3]:.3f} \t Valid location accuracy: {valid_stats[3]:.3f}')
add_to_writer(writer, epoch, train_loss, valid_loss, train_stats, valid_stats, config)
# dumping config file
with open(config['log_path'] + "/config.yaml", "w") as file:
_ = yaml.dump(config, file)
# main
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="location to config yaml file")
args = parser.parse_args()
# checking device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f'available device {device}')
# Loading config:
logger.info("Loading config")
with open(args.config) as file:
config = yaml.safe_load(file)
for i in config:
logger.info(f'{i} : {config[i]}')
# Setting up Tensorboard
config['log_path'] = os.path.join(config['log_path'], str(datetime.datetime.now())[:-7])
writer = SummaryWriter(config['log_path'])
# Loading data:
logger.info("Loading data and dataloaders")
train_dataset, valid_dataset, vocab = get_Dataset_and_vocabs(config['data']['path'], \
config['data']['train_file'], \
config['data']['valid_file'], \
config['data']['wavs_location'])
collate_fn_ = partial(collate_fn, device=device, text_pad_value=vocab['text_vocab']["<pad>"] \
, audio_pad_value=0, audio_split_samples=config["audio_split_samples"])
train_dataloader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, collate_fn=collate_fn_,
)
valid_dataloader = DataLoader(valid_dataset, batch_size=2 * config['batch_size'], shuffle=True,
collate_fn=collate_fn_)
# Loading model
model = Model(audio_split_samples=config["audio_split_samples"], \
hid_dim=config["hid_dim"], \
audio_representation_layers=config["audio_representation_layers"], \
n_heads=config["n_heads"], \
pf_dim=config["pf_dim"], \
dropout=config["dropout"], \
max_length=config["positional_encoding_max_len"], \
len_text_vocab=len(vocab['text_vocab']), \
text_pad_index=vocab['text_vocab']['<pad>'], \
text_representation_layers=config["text_representation_layers"], \
cross_attention_layers=config["cross_attention_layers"], \
output_dim_1=len(vocab['action_vocab']), \
output_dim_2=len(vocab['object_vocab']), \
output_dim_3=len(vocab['position_vocab']), \
config=config \
).to(device)
logger.info(f'Model loaded')
# Initializing weights in model:
model.apply(initialize_weights)
# Number of model parameters
logger.info(f'The model has {count_parameters(model):,} trainable parameters')
# Optimizer
optim = torch.optim.Adam(model.parameters(), lr=config['optimizer']['lr'],
betas=(config['optimizer']['beta1'], config['optimizer']['beta2']))
runner(config["epochs"], model, train_dataloader, valid_dataloader, optim, writer, config)
writer.close()
if __name__ == "__main__":
main()