forked from akashe/Multimodal-action-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
105 lines (82 loc) · 4.08 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import datetime
import logging
import os
import sys
from functools import partial
import torch
import yaml
from torch.utils.data import DataLoader
from model import Model
from utils import get_Dataset_and_vocabs_for_eval, collate_fn, evaluate, count_parameters
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(name)s - %(levelname)s - %(message)s')
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setLevel(logging.INFO)
stdout_handler.setFormatter(formatter)
file_handler = logging.FileHandler('logs/eval_logs_'+str(datetime.datetime.now())[:-7]+'.log')
stdout_handler.setLevel(logging.INFO)
stdout_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stdout_handler)
def runner(model, valid_iterator):
model.eval()
valid_loss, valid_stats = evaluate(model, valid_iterator)
logger.info(f'\t Val. Loss: {valid_loss:.3f}')
logger.info(f'\tValid f1: {valid_stats[0]}')
logger.info(f'\tValid action accuracy: {valid_stats[1]:.3f}')
logger.info(f'\t Valid object accuracy: {valid_stats[2]:.3f}')
logger.info(f'\t Valid location accuracy: {valid_stats[3]:.3f}')
# main
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="location to config yaml file")
args = parser.parse_args()
# checking device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f'available device {device}')
# Loading config:
logger.info("Loading config")
with open(args.config) as file:
config = yaml.safe_load(file)
for i in config:
logger.info(f'{i} : {config[i]}')
# Loading data:
logger.info("Loading data and dataloaders")
valid_dataset, vocab = get_Dataset_and_vocabs_for_eval(config['data']['path'], \
config['data']['valid_file'], \
config['data']['wavs_location'])
collate_fn_ = partial(collate_fn, device=device, text_pad_value=vocab['text_vocab']["<pad>"] \
, audio_pad_value=0, audio_split_samples=config["audio_split_samples"])
valid_dataloader = DataLoader(valid_dataset, batch_size=2 * config['batch_size'], shuffle=True,
collate_fn=collate_fn_)
# Loading model
model = Model(audio_split_samples=config["audio_split_samples"], \
hid_dim=config["hid_dim"], \
audio_representation_layers=config["audio_representation_layers"], \
n_heads=config["n_heads"], \
pf_dim=config["pf_dim"], \
dropout=config["dropout"], \
max_length=config["positional_encoding_max_len"], \
len_text_vocab=len(vocab['text_vocab']), \
text_pad_index=vocab['text_vocab']['<pad>'], \
text_representation_layers=config["text_representation_layers"], \
cross_attention_layers=config["cross_attention_layers"], \
output_dim_1=len(vocab['action_vocab']), \
output_dim_2=len(vocab['object_vocab']), \
output_dim_3=len(vocab['position_vocab']), \
config=config
).to(device)
# Loading model weights in model:
if device.type == 'cpu':
model.load_state_dict(torch.load(os.path.join(config['data']['path'],config["model_name"]),map_location=torch.device('cpu')))
else:
model.load_state_dict(
torch.load(os.path.join(config['data']['path'], config["model_name"])))
logger.info(f'Model loaded')
# Number of model parameters
logger.info(f'The model has {count_parameters(model):,} trainable parameters')
runner(model, valid_dataloader)
if __name__ == "__main__":
main()