-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinterleaving.c
539 lines (494 loc) · 16.3 KB
/
interleaving.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <inttypes.h>
#include "particle.h"
#include "rockstar.h"
#include "groupies.h"
#include "fof.h"
#include "inthash.h"
#include "config_vars.h"
#include "check_syscalls.h"
#include "bounds.h"
#include <unistd.h>
#define FAST3TREE_TYPE struct bparticle
#include "fast3tree.c"
struct fast3tree *bp_tree = NULL;
struct fast3tree_results *bp_res = NULL;
struct bgroup *bg = NULL;
int64_t num_bg = 0;
int64_t max_gid, our_chunk;
struct inthash *bg_ih = NULL;
int64_t num_new_bp = 0;
struct bgroup *final_bg = NULL;
int64_t num_bg_sets = 0;
int64_t *bg_set_sizes = NULL;
int64_t *bg_set_indices = NULL;
int64_t *num_new_groups = NULL;
void set_bp_chunk(int64_t chunk) {
our_chunk = chunk;
for (int64_t i=0; i<num_bp; i++) bp[i].chunk = chunk;
}
void clear_bp_data(void) {
fast3tree_results_free(bp_res);
bp_res = NULL;
fast3tree_free(&bp_tree);
bp = check_realloc(bp, 0, "Freeing bp");
num_bp = 0;
}
void clear_bg_data(void) {
if (bg_ih) free_inthash(bg_ih);
bg_ih = NULL;
bg = check_realloc(bg, 0, "freeing BG");
num_bg = 0;
}
void clear_final_bg_data(void) {
final_bg = check_realloc(final_bg, 0, "freeing final bg");
bg_set_sizes = check_realloc(bg_set_sizes, 0, "freeing bg set sizes");
bg_set_indices = check_realloc(bg_set_indices, 0, "freeing bg set indices");
num_bg_sets = 0;
}
int64_t add_new_bgroup(struct bparticle *tbp) {
if (!(num_bg % 1000))
bg = check_realloc(bg, sizeof(struct bgroup)*(num_bg+1000), "BG");
bg[num_bg].chunk = tbp->chunk;
bg[num_bg].tagged = -1;
bg[num_bg].next = -1;
bg[num_bg].head = num_bg;
bg[num_bg].id = tbp->bgid;
if (tbp->chunk == our_chunk) {
bg[num_bg].num_p = all_fofs[tbp->bgid].num_p;
assert(bg[num_bg].num_p);
}
else bg[num_bg].num_p = 0;
num_bg++;
return (num_bg-1);
}
int64_t find_bgroup(struct bparticle *tbp) {
int64_t uid = tbp->chunk*max_gid + tbp->bgid;
int64_t gid = (int64_t)ih_getval(bg_ih, uid);
gid--;
if (gid>-1) {
if (!(tbp->chunk == bg[gid].chunk && tbp->bgid == bg[gid].id)) {
fprintf(stderr, "Huh? Asked for chunk %"PRId64" and id %"PRId64", and got %"PRId64", %"PRId64" with %"PRId64" particles\n", tbp->chunk, tbp->bgid, bg[gid].chunk, bg[gid].id, bg[gid].num_p);
assert(0);
}
}
return (gid);
}
struct bgroup *find_bgroup_from_id(int64_t id, int64_t chunk) {
if (id >= max_gid) return NULL;
int64_t uid = chunk*max_gid + id;
int64_t gid = (int64_t)ih_getval(bg_ih, uid);
if (!gid) return NULL;
gid--;
if (!(chunk == bg[gid].chunk && id == bg[gid].id)) {
fprintf(stderr, "Huh? Asked for chunk %"PRId64" and id %"PRId64", and got %"PRId64", %"PRId64" (uid=%"PRId64") with %"PRId64" particles (max_gid=%"PRId64"; uid=%"PRId64"; num_elems=%"PRId64")\n", chunk, id, bg[gid].chunk, bg[gid].id, bg[gid].chunk*max_gid + bg[gid].id, bg[gid].num_p, max_gid, uid, bg_ih->elems);
fprintf(stderr, "PID: %d\n", getpid());
sleep(100);
assert(0);
}
return (bg+gid);
}
void verify_bgroup_hash(void) {
int64_t i;
for (i=0; i<bg_ih->num_buckets; i++) {
if (bg_ih->buckets[i].key != IH_INVALID) {
struct bgroup *tbg = bg + ((int64_t)bg_ih->buckets[i].data)-1;
if ((tbg->chunk*max_gid + tbg->id) != bg_ih->buckets[i].key) {
fprintf(stderr, "Error in bucket %"PRId64"!\n", i);
}
}
}
}
/* Guarantee that the head particle has the lowest chunk number */
void link_bgroups(int64_t gid1, int64_t gid2) {
if (gid1==gid2) return;
if (bg[gid1].head==bg[gid2].head) return;
if (bg[bg[gid1].head].chunk > bg[bg[gid2].head].chunk) {
int64_t temp = gid2;
gid2 = gid1;
gid1 = temp;
}
gid2 = bg[gid2].head;
int64_t tail = gid1;
while (bg[tail].next > -1) {
tail = bg[tail].next;
}
bg[tail].next = gid2;
tail = gid2;
while (tail > -1) {
bg[tail].head = bg[gid1].head;
tail = bg[tail].next;
}
}
void mark_bgroup_tree(void) {
int64_t i,j;
struct tree3_node *nodes = bp_tree->root;
for (i=0; i<bp_tree->num_nodes; i++) {
if (nodes[i].flags & FAST3TREE_MARKED) continue;
for (j=1; j<nodes[i].num_points; j++)
if (nodes[i].points[j].bgid != nodes[i].points[0].bgid ||
nodes[i].points[j].chunk != nodes[i].points[0].chunk) break;
if (j==nodes[i].num_points) _fast3tree_mark_node(nodes+i, FAST3TREE_MARKED);
}
}
void build_bgroup_links(void) {
int64_t i,j;
bp_tree = fast3tree_init(num_new_bp, bp + (num_bp - num_new_bp));
mark_bgroup_tree();
bp_res = fast3tree_results_init();
bg_ih = new_inthash();
max_gid = -1;
for (i=0; i<num_bp; i++) {
if (bp[i].bgid > max_gid) max_gid = bp[i].bgid;
}
max_gid++;
for (i=0; i<num_bp; i++) {
int64_t uid = bp[i].chunk*max_gid + bp[i].bgid;
if (!ih_getval(bg_ih, uid)) {
int64_t gid = add_new_bgroup(bp+i);
ih_setval(bg_ih, uid, (void *)(gid+1));
}
}
float r = AVG_PARTICLE_SPACING * FOF_LINKING_LENGTH;
if (PERIODIC) _fast3tree_set_minmax(bp_tree, 0, BOX_SIZE);
for (i=0; i<(num_bp-num_new_bp); i++) {
int64_t gid1 = find_bgroup(bp+i);
fast3tree_find_sphere_marked(bp_tree, bp_res, bp[i].pos, r, PERIODIC, 1);
//if (!PERIODIC) fast3tree_find_sphere(bp_tree, bp_res, bp[i].pos, r);
//else fast3tree_find_sphere_periodic(bp_tree, bp_res, bp[i].pos, r);
for (j=0; j<bp_res->num_points; j++) {
int64_t gid2 = find_bgroup(bp_res->points[j]);
assert(gid1 > -1 && gid2 > -1);
link_bgroups(gid1, gid2);
}
}
}
void check_bgroup_sanity(int64_t num_sets, int64_t *set_sizes, struct bgroup *groups) {
int64_t i,j=0,l=0;
for (i=0; i<num_sets; i++) {
l = j+set_sizes[i];
for (; j<l; j++) if (groups[j].next == -1) break;
if (j==l) {
fprintf(stderr, "[Error] Bgroup sanity test failed!\n");
assert(0);
}
j=l;
}
}
/* Fn to return list of linked bgroups given input list */
/* Ignores bgroups if any linked groups belong to a lower chunk number. */
void find_bgroup_sets(int64_t chunk, int64_t *num_sets, int64_t **set_sizes, struct bgroup **groups, int64_t *total_groups) {
int64_t i, j, loc=0, new_total_size = 0;
int64_t *new_set_sizes = check_realloc(NULL, (*num_sets)*sizeof(int64_t),
"New set sizes");
int64_t *set_new_index = check_realloc(NULL, (*num_sets)*sizeof(int64_t),
"Num in set");
int64_t *num_new_bgroups = check_realloc(NULL, (*num_sets)*sizeof(int64_t),
"Num in set");
//Step 1: Link together groups which are in the same request set
for (i=0; i<*num_sets; i++) {
new_set_sizes[i] = set_new_index[i] = num_new_bgroups[i] = 0;
struct bgroup *g1 = NULL;
assert(set_sizes[0][i]>0);
for (j=loc; j<loc+set_sizes[0][i]; j++) {
g1 = find_bgroup_from_id(groups[0][j].id, groups[0][j].chunk);
if (g1) {
if (groups[0][j].num_p) {
assert(!(g1->num_p) || (g1->num_p == groups[0][j].num_p));
g1->num_p = groups[0][j].num_p;
}
struct bgroup temp = groups[0][j];
groups[0][j] = groups[0][loc];
groups[0][loc] = temp;
bg[g1->head].tagged = -1;
j++;
break;
} else { num_new_bgroups[i]++; }
}
for (; j<loc+set_sizes[0][i]; j++) {
struct bgroup *g2 = find_bgroup_from_id(groups[0][j].id, groups[0][j].chunk);
if (g2) {
bg[g2->head].tagged = -1;
link_bgroups(g1-bg, g2-bg);
if (groups[0][j].num_p) {
assert(!(g2->num_p) || (g2->num_p == groups[0][j].num_p));
g2->num_p = groups[0][j].num_p;
}
}
else { num_new_bgroups[i]++; }
}
loc = j;
}
//Step 2a: tag group heads to check for group sets which are linked together
j=0;
for (i=0; i<*num_sets; i++) {
struct bgroup *g1 = find_bgroup_from_id(groups[0][j].id, groups[0][j].chunk);
j+=set_sizes[0][i];
if (!g1) {
assert(num_new_bgroups[i] == set_sizes[0][i]);
new_set_sizes[i] = num_new_bgroups[i];
continue;
}
if (bg[g1->head].chunk < chunk) {
int64_t gid = g1->head;
while (gid > -1) {
if (bg[gid].chunk != our_chunk) bg[gid].num_p = 0;
gid = bg[gid].next;
}
continue;
}
if (bg[g1->head].tagged < 0) {
bg[g1->head].tagged = i;
new_set_sizes[i] += num_new_bgroups[i];
int64_t gid = g1->head;
while (gid > -1) {
new_set_sizes[i]++;
gid = bg[gid].next;
}
} else {
new_set_sizes[bg[g1->head].tagged] += num_new_bgroups[i];
}
}
//Step 2b: build new group list
new_total_size = j = loc = 0;
for (i=0; i<*num_sets; i++) {
set_new_index[i] = new_total_size;
new_total_size += new_set_sizes[i];
}
struct bgroup *new_bgroups = check_realloc(NULL, new_total_size*sizeof(struct bgroup), "New bgroups");
*total_groups = new_total_size;
for (i=0; i<*num_sets; i++) {
struct bgroup *g1 = find_bgroup_from_id(groups[0][j].id, groups[0][j].chunk);
if (!g1) { //Copy all groups over
for (int64_t k=0; k<set_sizes[0][i]; k++)
new_bgroups[set_new_index[i]+k] = groups[0][j+k];
j += set_sizes[0][i];
continue;
}
if (bg[g1->head].chunk < chunk) {
j += set_sizes[0][i];
continue;
}
int64_t tagged = bg[g1->head].tagged;
assert(tagged >=0 && tagged < *num_sets);
if (tagged == i) { //Copy all linked groups over
int64_t gid = g1->head;
while (gid > -1) {
new_bgroups[set_new_index[i]] = bg[gid];
if (bg[gid].chunk != our_chunk) bg[gid].num_p = 0;
set_new_index[i]++;
gid = bg[gid].next;
}
}
//Copy all nonlinked groups over
loc = j;
for (; j<loc+set_sizes[0][i]; j++) {
struct bgroup *g2 = find_bgroup_from_id(groups[0][j].id, groups[0][j].chunk);
if (!g2) {
new_bgroups[set_new_index[tagged]] = groups[0][j];
set_new_index[tagged]++;
}
}
}
//Step 3: Collapse set sizes
for (i=0,j=0; j<*num_sets; j++) {
if (!new_set_sizes[j]) continue;
new_set_sizes[i] = new_set_sizes[j];
i++;
}
*num_sets = i;
free(*groups);
*groups = new_bgroups;
free(*set_sizes);
*set_sizes = new_set_sizes;
free(set_new_index);
free(num_new_bgroups);
check_bgroup_sanity(*num_sets, *set_sizes, *groups);
}
void bgroups_to_setlist(void) {
int64_t i, total_num_groups = 0, set_num = 0, j=0;
//Count number of independent sets, ignoring small unconnected groups
num_bg_sets = 0;
total_num_groups = num_bg;
for (i=0; i<num_bg; i++) {
if (bg[i].head != i) continue;
if (bg[i].next == -1 && bg[i].num_p < MIN_HALO_PARTICLES) {
total_num_groups--;
continue;
}
if (bg[i].chunk < our_chunk) {
j=i;
while (j>-1) {
total_num_groups--;
j = bg[j].next;
}
continue;
}
num_bg_sets++;
}
bg_set_sizes = check_realloc(bg_set_sizes, sizeof(int64_t)*(num_bg_sets),
"Allocating set sizes.");
final_bg = check_realloc(final_bg, sizeof(struct bgroup)*(total_num_groups), "Allocating bgroup lists.");
//Fill group list and set sizes
j=0;
memset(bg_set_sizes, 0, sizeof(int64_t)*num_bg_sets);
for (i=0; i<num_bg; i++) {
if (bg[i].head != i) continue;
if (bg[i].next == -1 && bg[i].num_p < MIN_HALO_PARTICLES) continue;
if (bg[i].chunk < our_chunk) continue;
int64_t gid = i;
while (gid > -1) {
final_bg[j] = bg[gid];
bg_set_sizes[set_num]++;
gid = bg[gid].next;
j++;
}
set_num++;
}
clear_bg_data();
}
int64_t prune_setlist(void) {
int64_t i,j=0,k=0,loc,num_p_in_set, set_num = 0;
for (i=0; i<num_bg_sets; i++) {
loc = j;
num_p_in_set = 0;
for (; j<loc+bg_set_sizes[i]; j++)
num_p_in_set += final_bg[j].num_p;
if (num_p_in_set < MIN_HALO_PARTICLES) continue;
bg_set_sizes[set_num] = bg_set_sizes[i];
set_num++;
j = loc;
for (; j<loc+bg_set_sizes[i]; j++,k++) final_bg[k] = final_bg[j];
}
return set_num;
}
int64_t calc_next_bgroup_chunk(void) {
int64_t i, total_bg=0, max_chunk = 0, total_num_p = 0;
if (!num_new_groups)
num_new_groups = check_realloc(NULL, sizeof(int64_t)*NUM_WRITERS,
"Allocating new group counts.");
memset(num_new_groups, 0, sizeof(int64_t)*NUM_WRITERS);
for (i=0; i<num_bg_sets; i++) total_bg += bg_set_sizes[i];
for (i=0; i<total_bg; i++) {
assert(final_bg[i].chunk >= 0 && final_bg[i].chunk < NUM_WRITERS);
total_num_p += final_bg[i].num_p;
if (!final_bg[i].num_p) num_new_groups[final_bg[i].chunk]++;
}
for (i=1; i<NUM_WRITERS; i++)
if (num_new_groups[i] > num_new_groups[max_chunk]) max_chunk = i;
if (num_new_groups[max_chunk])
return max_chunk;
return -1;
}
int64_t tag_halo_as_in_bounds(struct halo *h) {
int64_t cur_h = h-halos;
if (h->flags & TAGGED_FLAG) return 0;
h->flags |= TAGGED_FLAG;
int64_t first_child = extra_info[cur_h].child;
int64_t tagged_halos = 1;
cur_h = first_child;
while (cur_h != -1) {
tagged_halos += tag_halo_as_in_bounds(halos + cur_h);
cur_h = extra_info[cur_h].next_cochild;
assert(cur_h != first_child);
}
return tagged_halos;
}
void sort_out_halos_for_chunk(int64_t chunk, float *bounds, struct workunit_info *w, struct fof **c_fofs, struct halo **c_halos, struct extra_halo_info **c_ei, struct particle **c_p, struct fof *fofs) {
int64_t i, c_num_h = 0, c_num_fofs = 0, c_num_p = 0, c_num_meta_p = 0, c_loc, c_meta_loc, cur_h, c_num_meta_fofs = 0;
memcpy(w->bounds, bounds, sizeof(float)*6);
for (i=0; i<num_halos; i++) halos[i].flags -= (halos[i].flags & TAGGED_FLAG);
for (i=0; i<num_halos; i++) {
if (halos[i].flags & TAGGED_FLAG) continue;
if (_check_bounds_raw(halos[i].pos, bounds))
c_num_h += tag_halo_as_in_bounds(halos+i);
}
for (i=0; i<num_halos; i++)
if (halos[i].flags & TAGGED_FLAG) {
if (halos[i].p_start >= w->num_particles) c_num_meta_p+=halos[i].num_p;
else c_num_p += halos[i].num_p;
}
if ((c_num_h == num_halos) || (c_num_p > 0.5*num_p) || (chunk == w->chunk)) {
*c_fofs = fofs;
*c_ei = extra_info;
*c_p = p;
*c_halos = halos;
return;
}
w->num_halos = c_num_h;
int64_t *index_conversion = check_realloc(NULL, num_halos*sizeof(int64_t),
"Halo index conversion");
*c_p = check_realloc(NULL, sizeof(struct particle)*(c_num_p + c_num_meta_p),
"chunk particles");
*c_halos = check_realloc(NULL, sizeof(struct halo)*(c_num_h), "chunk halos");
*c_ei = check_realloc(NULL, sizeof(struct extra_halo_info)*(c_num_h),
"chunk info");
int64_t j = 0, processed_parts = 0, processed_meta_parts = w->num_particles;
w->num_particles = c_meta_loc = c_num_p;
w->num_meta_p = c_num_meta_p;
cur_h = c_loc = 0;
for (i=0; i<num_halos; i++) index_conversion[i] = -1;
for (i=0; i<w->num_fofs; i++) {
int64_t num_p_from_fof = 0;
int64_t num_h_from_fof = 0;
int64_t *p_start = &processed_parts;
int64_t *copy_loc = &c_loc;
if (!fofs[i].particles) {
p_start = &processed_meta_parts;
copy_loc = &c_meta_loc;
}
int64_t p_end = *p_start + fofs[i].num_p;
for (; j<num_halos && (halos[j].p_start+halos[j].num_p<=p_end) &&
(halos[j].p_start >= *p_start); j++) {
if ((halos[j].flags & TAGGED_FLAG)) {
if (halos[j].num_p == 0 && halos[j].p_start == p_end) {
int64_t sub_of = extra_info[j].sub_of;
while (sub_of > -1 && extra_info[sub_of].sub_of > -1)
sub_of = extra_info[sub_of].sub_of;
if (sub_of > -1 && halos[sub_of].p_start+halos[sub_of].num_p > p_end)
break;
}
c_halos[0][cur_h] = halos[j];
c_halos[0][cur_h].p_start = *copy_loc;
c_ei[0][cur_h] = extra_info[j];
index_conversion[j] = cur_h;
cur_h++;
num_h_from_fof++;
if (halos[j].num_p) {
num_p_from_fof += halos[j].num_p;
memcpy((*c_p)+*copy_loc, p+halos[j].p_start, halos[j].num_p*sizeof(struct particle));
copy_loc[0] += halos[j].num_p;
}
}
}
p_start[0] += fofs[i].num_p;
if (num_h_from_fof && !(num_p_from_fof)) cur_h -= num_h_from_fof;
if (num_p_from_fof) {
if (!(c_num_fofs%1000))
*c_fofs = check_realloc(*c_fofs, sizeof(struct fof)*(c_num_fofs+1000),
"chunk fofs");
c_fofs[0][c_num_fofs] = fofs[i];
assert((!fofs[i].particles) || (fofs[i].num_p == num_p_from_fof));
c_fofs[0][c_num_fofs].num_p = num_p_from_fof;
c_num_fofs++;
if (!fofs[i].particles) c_num_meta_fofs++;
}
}
w->num_halos = c_num_h = cur_h;
#define IC(x) (x = ((x > -1) && (x < num_halos)) ? index_conversion[x] : -1)
for (i=0; i<c_num_h; i++) {
IC(c_ei[0][i].sub_of); //Note that parent may not exist for this chunk
IC(c_ei[0][i].child);
IC(c_ei[0][i].next_cochild);
IC(c_ei[0][i].prev_cochild);
}
#undef IC
w->num_fofs = c_num_fofs;
w->num_meta_fofs = c_num_meta_fofs;
w->num_meta_p = c_num_meta_p;
w->num_particles = c_num_p;
w->total_bg = 0;
free(index_conversion);
}