Skip to content

Latest commit

 

History

History
145 lines (107 loc) · 5.41 KB

README.md

File metadata and controls

145 lines (107 loc) · 5.41 KB

1. Fine-tune the vehicle detector with the dataset UAV-Vehicle-Detection-Dataset.

2. Step by step fine-tuning the vehicle detector Fine-tune-YOLOv3.

3. A multi-vehicle tracking is conducted by deep_sort_yolov3.


Step by step implementation of fine-tuning the UAV vehicle detector

System requirement: Ubuntu 16.04, OpenCV 3.4.0 and CUDA 9.0


Install dependencies (OpenCV 3.4.0 and CUDA 9.0)

  1. update apt-get
sudo apt-get update
  1. Install apt-get deps
sudo apt-get install openjdk-8-jdk git python-dev python3-dev python-numpy python3-numpy build-essential python-pip python3-pip python-virtualenv swig python-wheel libcurl3-dev curl   
  1. install nvidia drivers
# download drivers
curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_9.0.176-1_amd64.deb

# download key to allow installation
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub

# install actual package
sudo dpkg -i ./cuda-repo-ubuntu1604_9.0.176-1_amd64.deb

#  install cuda 
sudo apt-get update
sudo apt-get install cuda-9-0   

2a. reboot Ubuntu

sudo reboot

2b. check nvidia driver install

nvidia-smi   

# you should see a list of gpus printed    
# if not, the previous steps failed.   
  1. Install cudnn
wget https://s3.amazonaws.com/open-source-william-falcon/cudnn-9.0-linux-x64-v7.3.1.20.tgz
sudo tar -xzvf cudnn-9.0-linux-x64-v7.3.1.20.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
  1. Add these lines to end of ~/.bashrc:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
export PATH="$PATH:/usr/local/cuda/bin"

4a. Reload bashrc

source ~/.bashrc
  1. Install OpenCV How to install OpenCV 3.4.0 on Ubuntu 16.04

Install YOLOv3

  1. Install YOLOv3: AlexeyAB/darknet

    a. For cuda complie issues: execute this line export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}, before make


Test YOLOv3

  1. Download pretrained yolo weights, put it inside darknet folder

  2. Run YOLOv3 by ./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights ./data/horses.jpg

    a. if errors such as "The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon support". If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script” happens, follow the steps as follows

    sudo apt-get install libqt4-dev
    cd ~/ opencv-3.4.0
    mkdir build
    cd build
    cmake -D WITH_QT=ON ..
    make
    sudo make install 

Use our multiple vehicle detector

  1. Clone this repository

    1. replace the Makefile in darknet folder
    2. add yolov3_dji.cfg in cfg folder
    3. add dji.data, dji.names, test.txt, train.txt files in data folder
  2. download our trained weight

    Test your video: ./darknet detector demo data/dji.data cfg/yolov3_dji.cfg yolov3_dji_final.weights yourVideo.mp4 -out_filename yourVideo.avi


Fine-tune Training using our dataset

  1. In general, follow How to Train

    a. if error Out of memory shows, in .cfg-file, increase subdivisions = 16, 32 or 64 following this

  2. Download our dataset, put all files in one folder dji, and add dji in data folder

  3. Training: ./darknet detector train data/dji.data cfg/yolov3_dji.cfg darknet53.conv.74


Reference

Please kindly cite this paper in your publications if this helps your research:

@article{wang2019orientation,
  title={Orientation-and Scale-Invariant Multi-Vehicle Detection and Tracking from Unmanned Aerial Videos},
  author={Wang, Jie and Simeonova, Sandra and Shahbazi, Mozhdeh},
  journal={Remote Sensing},
  volume={11},
  number={18},
  pages={2155},
  year={2019},
  publisher={Multidisciplinary Digital Publishing Institute}
}