-
Notifications
You must be signed in to change notification settings - Fork 1
/
low_pass_filter.py
62 lines (49 loc) · 2.2 KB
/
low_pass_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import matplotlib.pyplot as plt
import numpy as np
import wave
import sys
import math
import contextlib
fname = 'test.wav'
outname = 'filtered.wav'
cutOffFrequency = 400.0
# from http://stackoverflow.com/questions/13728392/moving-average-or-running-mean
def running_mean(x, windowSize):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[windowSize:] - cumsum[:-windowSize]) / windowSize
# from http://stackoverflow.com/questions/2226853/interpreting-wav-data/2227174#2227174
def interpret_wav(raw_bytes, n_frames, n_channels, sample_width, interleaved = True):
if sample_width == 1:
dtype = np.uint8 # unsigned char
elif sample_width == 2:
dtype = np.int16 # signed 2-byte short
else:
raise ValueError("Only supports 8 and 16 bit audio formats.")
channels = np.fromstring(raw_bytes, dtype=dtype)
if interleaved:
# channels are interleaved, i.e. sample N of channel M follows sample N of channel M-1 in raw data
channels.shape = (n_frames, n_channels)
channels = channels.T
else:
# channels are not interleaved. All samples from channel M occur before all samples from channel M-1
channels.shape = (n_channels, n_frames)
return channels
with contextlib.closing(wave.open(fname,'rb')) as spf:
sampleRate = spf.getframerate()
ampWidth = spf.getsampwidth()
nChannels = spf.getnchannels()
nFrames = spf.getnframes()
# Extract Raw Audio from multi-channel Wav File
signal = spf.readframes(nFrames*nChannels)
spf.close()
channels = interpret_wav(signal, nFrames, nChannels, ampWidth, True)
# get window size
# from http://dsp.stackexchange.com/questions/9966/what-is-the-cut-off-frequency-of-a-moving-average-filter
freqRatio = (cutOffFrequency/sampleRate)
N = int(math.sqrt(0.196196 + freqRatio**2)/freqRatio)
# Use moviung average (only on first channel)
filtered = running_mean(channels[0], N).astype(channels.dtype)
wav_file = wave.open(outname, "w")
wav_file.setparams((1, ampWidth, sampleRate, nFrames, spf.getcomptype(), spf.getcompname()))
wav_file.writeframes(filtered.tobytes('C'))
wav_file.close()