forked from Rudrabha/Wav2Lip
-
Notifications
You must be signed in to change notification settings - Fork 47
/
predict.py
144 lines (118 loc) · 4.09 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import subprocess
from cog import BasePredictor, Input, Path
import inference
from time import time
from functools import wraps
import torch
def make_mem_efficient(cls: BasePredictor):
if not torch.cuda.is_available():
return cls
old_setup = cls.setup
old_predict = cls.predict
@wraps(old_setup)
def new_setup(self, *args, **kwargs):
ret = old_setup(self, *args, **kwargs)
_move_to(self, "cpu")
return ret
@wraps(old_predict)
def new_predict(self, *args, **kwargs):
_move_to(self, "cuda")
try:
ret = old_predict(self, *args, **kwargs)
finally:
_move_to(self, "cpu")
return ret
cls.setup = new_setup
cls.predict = new_predict
return cls
def _move_to(self, device):
try:
self = self.cached_models
except AttributeError:
pass
for attr, value in vars(self).items():
try:
value = value.to(device)
except AttributeError:
pass
else:
print(f"Moving {self.__name__}.{attr} to {device}")
setattr(self, attr, value)
torch.cuda.empty_cache()
@make_mem_efficient
class Predictor(BasePredictor):
cached_models = inference
def setup(self):
inference.do_load("checkpoints/wav2lip_gan.pth")
def predict(
self,
face: Path = Input(description="video/image that contains faces to use"),
audio: Path = Input(description="video/audio file to use as raw audio source"),
pads: str = Input(
description="Padding for the detected face bounding box.\n"
"Please adjust to include chin at least\n"
'Format: "top bottom left right"',
default="0 10 0 0",
),
smooth: bool = Input(
description="Smooth face detections over a short temporal window",
default=True,
),
fps: float = Input(
description="Can be specified only if input is a static image",
default=25.0,
),
out_height: int = Input(
description="Output video height. Best results are obtained at 480 or 720",
default=480,
),
) -> Path:
try:
os.remove("results/result_voice.mp4")
except FileNotFoundError:
pass
face_ext = os.path.splitext(face)[-1]
if face_ext not in [".mp4", ".mov", ".png" , ".jpg" , ".jpeg" , ".gif", ".mkv", ".webp"]:
raise ValueError(f'Unsupported face format {face_ext!r}')
audio_ext = os.path.splitext(audio)[-1]
if audio_ext not in [".wav", ".mp3"]:
raise ValueError(f'Unsupported audio format {audio_ext!r}')
args = [
"--checkpoint_path", "checkpoints/wav2lip_gan.pth",
"--face", str(face),
"--audio", str(audio),
"--pads", *pads.split(" "),
"--fps", str(fps),
"--out_height", str(out_height),
]
if not smooth:
args += ["--nosmooth"]
print("-> run:", " ".join(args))
inference.args = inference.parser.parse_args(args)
s = time()
try:
inference.main()
except ValueError as e:
print('-> Encountered error, skipping lipsync:', e)
args = [
"ffmpeg", "-y",
# "-vsync", "0", "-hwaccel", "cuda", "-hwaccel_output_format", "cuda",
"-stream_loop", "-1",
"-i", str(face),
"-i", str(audio),
"-shortest",
"-fflags", "+shortest",
"-max_interleave_delta", "100M",
"-map", "0:v:0",
"-map", "1:a:0",
# "-c", "copy",
# "-c:v", "h264_nvenc",
"results/result_voice.mp4",
]
print("-> run:", " ".join(args))
print(subprocess.check_output(args, encoding="utf-8"))
print(time() - s)
return Path("results/result_voice.mp4")