-
Notifications
You must be signed in to change notification settings - Fork 4
/
config_pretrain.py
223 lines (198 loc) · 6.88 KB
/
config_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# ----------------------------------------------------------------------
# HAP: Structure-Aware Masked Image Modeling for Human-Centric Perception
# Written by Junkun Yuan ([email protected])
# ----------------------------------------------------------------------
# Configuration file for pre-training
# ----------------------------------------------------------------------
# References:
# Swin Transformer: https://github.com/microsoft/Swin-Transformer
# ----------------------------------------------------------------------
import os
import yaml
from yacs.config import CfgNode as CN
import timm
import torch
import torchvision
_C = CN()
# Base config files
_C.BASE = ['']
# OW: configs that could be overwritten by command line arguments
# ----------------------------------------------------------------------
# Data settings
# ----------------------------------------------------------------------
_C.DATA = CN()
# Dataset name, OW
_C.DATA.NAME = 'LUPerson'
# Path to dataset, OW
_C.DATA.ROOT_DIR = '../LUPerson-data'
# Path to pose data, OW
_C.DATA.ROOT_DIR_POSE = '../LUPerson-pose'
# Sample source, 'random' or pkl file (e.g., cfs_list.pkl from TransReID-SSL), OW
_C.DATA.SAMPLE_SOURCE = 'random'
# Ratio of samples to train, use decimal like 0.5 or integer like 1281167
_C.DATA.SAMPLE_RATIO = 0.5
# Image input size
_C.DATA.INPUT_SIZE = (256, 128)
# Data transforms, OW
_C.DATA.TRANSFORMS = 'transforms_pose'
# Workers to load data
_C.DATA.NUM_WORKERS = 16
# Training data batch size per gpu, OW
_C.DATA.BATCH_SIZE = None
# Effective training data batch size
_C.DATA.TOTAL_BATCH_SIZE = 4096
# Accumulate gradient iterasions, OW
_C.DATA.ACCUM_ITER = 1
# Pin CPU memory
_C.DATA.PIN_MEMORY = True
# ----------------------------------------------------------------------
# Model settings
# ----------------------------------------------------------------------
_C.MODEL = CN()
# Model name
_C.MODEL.NAME = 'pose_mae_vit_base_patch16'
# Checkpoint to resume, OW
_C.MODEL.RESUME = ''
# Position embedding size of checkpoint model, OW
_C.MODEL.CHECKPOINT_POS_EMBED_SIZE = (16, 8)
# Masking ratio (percentage of removed patches), OW
_C.MODEL.MASK_RATIO = 0.5
# Weight to align, OW
_C.MODEL.ALIGN = 0.05
# Normalization of target pixel values, OW
_C.MODEL.NORM_PIX_LOSS = True
# ----------------------------------------------------------------------
# Training settings
# ----------------------------------------------------------------------
_C.TRAIN = CN()
# Training epochs, OW
_C.TRAIN.EPOCHS = 400
# Start epoch
_C.TRAIN.START_EPOCH = 0
# Warmup epochs, OW
_C.TRAIN.WARMUP_EPOCHS = 40
# Base learning rate, OW
_C.TRAIN.BLR = 1.5e-4
# Learning rate, default: lr = blr * total_batch_size / 256, OW
_C.TRAIN.LR = None
# Weight decay
_C.TRAIN.WEIGHT_DECAY = 0.05
# Optimizer Betas
_C.TRAIN.BETAS = (0.9, 0.95)
# Device to train, OW
_C.TRAIN.DEVICE = 'cuda'
# If overwrite previous checkpoint
_C.TRAIN.CKPT_OVERWRITE = True
# Print frequency, iters
_C.TRAIN.PRINT_FREQ = 10
# Save frequency, epochs
_C.TRAIN.SAVE_FREQ = 5
# ----------------------------------------------------------------------
# Distributed training settings
# ----------------------------------------------------------------------
_C.DIST = CN()
# Distributed mode
_C.DIST.DIST_MODE = False
# World size, OW
_C.DIST.WORLD_SIZE = 1
# Rank
_C.DIST.RANK = 0
# Local rank, OW
_C.DIST.LOCAL_RANK = 0
# Enable ITP distributed training, OW
_C.DIST.DIST_ON_ITP = False
# URL used to set up distributed training, OW
_C.DIST.DIST_URL = 'env://'
# Backend of distributed training
_C.DIST.BACKEND = 'nccl'
# Log on 'master' process, or main process of each 'node', or 'all' processes
_C.DIST.LOG = 'node'
# ----------------------------------------------------------------------
# Environment settings
# ----------------------------------------------------------------------
_C.VERSION = CN()
# PyTorch version
_C.VERSION.PYTORCH = str(torch.__version__)
# TorchVision version
_C.VERSION.TORCHVISION = str(torchvision.__version__)
# timm version
_C.VERSION.TIMM = str(timm.__version__)
# ----------------------------------------------------------------------
# Misc settings
# ----------------------------------------------------------------------
# Task to run
_C.TASK = 'pretrain'
# Random seed, OW
_C.SEED = 0
# Tag of experiment for log, OW
_C.TAG = 'default'
# Output directory, OW
_C.OUTPUT_DIR = 'output-HAP/temp'
# Flag of print on console
_C.PRINT = False
def _update_config_from_file(cfg, cfg_file):
"""Update config from cfg file."""
if cfg_file:
cfg.defrost()
with open(cfg_file, 'r') as f:
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
# Update from each config file in 'Base' key of cfg file
for cfg_each in yaml_cfg.setdefault('BASE', ['']):
if cfg_each:
_update_config_from_file(cfg, os.path.join(os.path.dirname(cfg_file), cfg_each))
print(f'=> Merge config from {cfg_file}')
cfg.merge_from_file(cfg_file)
cfg.freeze()
def update_config(cfg, args):
"""Update config from cfg file and command line arguments."""
# Update from cfg file
_update_config_from_file(cfg, args.config_file)
# Update from command line arguments
cfg.defrost()
# Merge data parameters
cfg.DATA.NAME = args.dataset
cfg.DATA.ROOT_DIR = args.data_path
cfg.DATA.ROOT_DIR_POSE = args.pose_path
cfg.DATA.SAMPLE_SOURCE = args.sample_split_source
if cfg.DATA.NAME == 'LUPerson':
cfg.DATA.TRANSFORMS = 'transforms_male'
elif cfg.DATA.NAME == 'LUPersonPose':
cfg.DATA.TRANSFORMS = 'transforms_pose'
else:
cfg.DATA.TRANSFORMS = 'transforms_mae'
cfg.DATA.BATCH_SIZE = args.batch_size
cfg.DATA.ACCUM_ITER = args.accum_iter
# Merge model parameters
cfg.MODEL.NAME = args.model
cfg.MODEL.RESUME = args.resume
if args.ckpt_pos_embed:
cfg.MODEL.CHECKPOINT_POS_EMBED_SIZE = tuple(args.ckpt_pos_embed)
cfg.MODEL.MASK_RATIO = args.mask_ratio
cfg.MODEL.ALIGN = args.align
# Merge training parameters
cfg.TRAIN.EPOCHS = args.epochs
cfg.TRAIN.WARMUP_EPOCHS = args.warmup_epochs
cfg.TRAIN.BLR = args.blr
cfg.TRAIN.LR = args.lr
cfg.TRAIN.DEVICE = args.device
cfg.TRAIN.CKPT_OVERWRITE = args.ckpt_overwrite
# Merge distributed training parameters
cfg.DIST.WORLD_SIZE = args.world_size
cfg.DIST.LOCAL_RANK = args.local_rank
cfg.DIST.DIST_ON_ITP = args.dist_on_itp
cfg.DIST.DIST_URL = args.dist_url
# Merge misc parameters
cfg.SEED = args.seed
cfg.TAG = args.tag
if args.output_dir:
cfg.OUTPUT_DIR = args.output_dir
else:
cfg.OUTPUT_DIR = os.path.join('output-HAP', cfg.TAG, cfg.TASK, cfg.MODEL.NAME, cfg.DATA.NAME)
cfg.freeze()
def merge_config(args):
"""Get a yacs CfgNode object with default values."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
cfg = _C.clone()
update_config(cfg, args)
return cfg