forked from DCMLab/protovoices-haskell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MainLearning.hs
394 lines (365 loc) · 11.9 KB
/
MainLearning.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
{-# LANGUAGE LambdaCase #-}
module Main where
import ChartParser qualified
import Common
( Analysis (..)
, Path (..)
)
import Control.Monad
( foldM
, forM
, forM_
, replicateM
, zipWithM_
)
import Control.Monad.Except (runExceptT)
import Data.Either (rights)
import Data.List (unzip4)
import Data.List qualified as L
import Data.Maybe
( catMaybes
, listToMaybe
, mapMaybe
)
import Data.Vector qualified as V
import GHC.Float (int2Double)
import Graphics.Matplotlib qualified as Plt
import GreedyParser qualified as Greedy
import Inference.Conjugate
( Hyper
, HyperRep
, Prior (sampleProbs)
, Probs
, ProbsRep
, Trace
, evalTraceLogP
, evalTracePredLogP
, getPosterior
, jeffreysPrior
, traceTrace
, uniformPrior
)
import Musicology.Pitch (SPitch)
import Numeric.Log qualified as Log
import PVGrammar
( Edge
, PVAnalysis
, loadAnalysis
, loadSurface
, topEdges
)
import PVGrammar.Parse
( protoVoiceEvaluator
, pvCountUnrestricted
)
import PVGrammar.Prob.Simple
( PVParams (PVParams)
, observeDerivation'
, sampleDerivation'
)
import Statistics.Sample qualified as Stats
import System.FilePath
( (<.>)
, (</>)
)
import System.FilePattern qualified as FP
import System.FilePattern.Directory qualified as FP
import System.Random.MWC.Probability qualified as MWC
import System.Random.Stateful
( StatefulGen
, initStdGen
, newIOGenM
)
import Text.Pretty.Simple
( CheckColorTty (..)
, OutputOptions (..)
, defaultOutputOptionsNoColor
, pPrintOpt
)
import Text.Printf (printf)
prettyPrint :: (Show a) => a -> IO ()
prettyPrint =
pPrintOpt
NoCheckColorTty
(defaultOutputOptionsNoColor{outputOptionsCompact = True})
dataDir :: FilePath
dataDir = "data/"
main = mainLearn
nBaselines :: Int
nBaselines = 100 -- default: 100
nSamples :: Int
nSamples = 250 -- default: 250
mainLearn :: IO ()
mainLearn = do
-- initialize
genPure <- initStdGen
gen <- newIOGenM genPure
genMWC <- MWC.create -- uses a fixed seed
let prior = uniformPrior @PVParams
-- load data
articleExamples <-
loadDir
(dataDir </> "theory-article")
["05b_cello_prelude_1-4", "09a_hinunter", "03_bwv784_pattern"]
Just bwv939 <-
loadItem
(dataDir </> "bach" </> "fünf-kleine-präludien")
"BWV_0939"
Just bwv940 <-
loadItem
(dataDir </> "bach" </> "fünf-kleine-präludien")
"BWV_0940"
let dataset = bwv939 : bwv940 : articleExamples
-- let dataset = take 3 articleExamples
putStrLn "list of pieces:"
forM_ dataset $ \(name, _ana, _trace, _surface) -> do
putStrLn $ " " <> name
-- compute overall posterior
posteriorTotal <- learn prior dataset
prettyPrint posteriorTotal
-- cross validation
let splits = leaveOneOut dataset
crossPerps <- forM splits (comparePerNote gen genMWC prior)
let (logpPriors, logpPosts, counts, basemeans, baselines) =
L.unzip5 crossPerps
count = sum counts
logppnPrior = sum logpPriors / count
logppnTrained = sum logpPosts / count
logppnBaseline = sum basemeans / count
-- look at each split
logppns = zipWith (/) logpPosts counts -- fmap (\(_, logp, count, _, _) -> logp / count) crossPerps
baselinelogppns = zipWith (\bs n -> (/ n) <$> bs) baselines counts
testpieces = fst <$> splits
testnames = (\(name, _, _, _) -> name) <$> testpieces
showSplits logppns baselinelogppns counts testnames
-- nsplits = int2Double $ length splits
-- meanlogppn = sum logppns / nsplits
putStrLn $ "prior logppn: " <> show logppnPrior
putStrLn $ "prior perppn: " <> show (exp $ negate logppnPrior)
putStrLn $ "overall trained logppn: " <> show logppnTrained
putStrLn $ "overall trained perppn: " <> show (exp $ negate logppnTrained)
putStrLn $ "baseline logppn: " <> show logppnBaseline
putStrLn $ "baseline perppn: " <> show (exp $ negate logppnBaseline)
putStrLn $ "prior-posterior Δlogppn:" <> show (logppnPrior - logppnTrained)
putStrLn $
printf
"logppn (nats) & %.3f & %.3f & %.3f\\\\"
logppnPrior
logppnTrained
logppnBaseline
let natsbits = log 2
putStrLn $
printf
"logppn (bits) & %.3f & %.3f & %.3f\\\\"
(logppnPrior / natsbits)
(logppnTrained / natsbits)
(logppnBaseline / natsbits)
putStrLn $
printf
"perppn & %.2f & %.2f & %.2f\\\\"
(exp $ negate logppnPrior)
(exp $ negate logppnTrained)
(exp $ negate logppnBaseline)
testEstimator = do
(long, short) <- loadExamples
articleExamples <-
loadDir
(dataDir </> "theory-article")
["05b_cello_prelude_1-4", "09a_hinunter", "03_bwv784_pattern"]
Just bwv939 <-
loadItem
(dataDir </> "bach" </> "fünf-kleine-präludien")
"BWV_0939"
Just bwv940 <-
loadItem
(dataDir </> "bach" </> "fünf-kleine-präludien")
"BWV_0940"
let dataset = bwv939 : bwv940 : articleExamples
genMWC <- MWC.createSystemRandom
let prior = uniformPrior @PVParams
posteriorTotal <- learn prior dataset
estimates <- derivationLogProb genMWC posteriorTotal long
-- let means = meanOfLogs <$> tail (L.inits estimates)
-- -- print means
-- Plt.onscreen $ Plt.line [1 .. length means] means
print $ meanOfLogs estimates
countRareIntDerivs = do
Just (_, _, _, surface) <-
loadItem
(dataDir </> "theory-article")
"10c_rare_int"
count <- ChartParser.parseSize pvCountUnrestricted surface
print count
-- loading data
-- ------------
type Piece =
(String, PVAnalysis SPitch, Trace PVParams, Path [SPitch] [Edge SPitch])
loadItem :: FilePath -> FilePath -> IO (Maybe Piece)
loadItem dir name = do
ana <- loadAnalysis (dir </> name <.> "analysis.json")
case ana of
Left _err -> pure Nothing
Right a ->
if anaTop a == PathEnd topEdges
then do
surface <- loadSurface (dir </> name <.> "musicxml")
case observeDerivation' (anaDerivation a) of
Left _err -> do
putStrLn $ "could not observe trace for " <> name <> ", skipping."
pure Nothing
Right trace -> pure $ Just (name, a, trace, surface)
else do
putStrLn $ "derivation for " <> name <> " is incomplete, skipping."
pure Nothing
loadDir :: FilePath -> [String] -> IO [Piece]
loadDir dir exclude = do
files <- FP.getDirectoryFiles dir ["*.analysis.json"]
let getName file = FP.match "*.analysis.json" file >>= listToMaybe
names =
-- exclude duplicats
filter (`L.notElem` exclude) $ mapMaybe getName files
-- print names
items <- mapM (loadItem dir) names
pure $ catMaybes items
loadExamples :: IO (Trace PVParams, Trace PVParams)
loadExamples = do
Just (_, _, bwv940Trace, _) <-
loadItem
(dataDir </> "bach" </> "fünf-kleine-präludien")
"BWV_0940"
Just (_, _, rareTrace, _) <-
loadItem
(dataDir </> "theory-article")
"10c_rare_int"
pure (bwv940Trace, rareTrace)
-- learning
-- --------
learn :: Hyper PVParams -> [Piece] -> IO (Hyper PVParams)
learn = foldM train
where
train prior (name, _, trace, _) =
case getPosterior prior trace sampleDerivation' of
Nothing -> do
putStrLn $ "couldn't compute posterior for " <> name <> ", skipping."
pure prior
Just post -> do
-- putStrLn $ "learned from " <> name <> "."
pure post
-- evaluating
-- ----------
leaveOneOut :: [a] -> [(a, [a])]
leaveOneOut dataset = go dataset [] []
where
go [] _ splits = splits
go (x : xs) done splits = go xs (x : done) ((x, xs <> done) : splits)
derivationLogProb
:: MWC.GenIO -> Hyper PVParams -> Trace PVParams -> IO [Double]
derivationLogProb gen hyper trace = do
probs <- replicateM nSamples $ MWC.sample (sampleProbs @PVParams hyper) gen
let estimates =
mapMaybe
(\params -> snd <$> evalTraceLogP params trace sampleDerivation')
probs
pure $! estimates
derivationLogProb'
:: MWC.GenIO -> Hyper PVParams -> Trace PVParams -> IO Double
derivationLogProb' gen hyper trace = do
estimates <- derivationLogProb gen hyper trace
pure $! meanOfLogs estimates
meanOfLogs :: (RealFloat b, Foldable t, Functor t) => t b -> b
meanOfLogs logs =
Log.ln $! Log.sum (Log.Exp <$> logs) / fromIntegral (length logs)
countNotes :: Path [a] b -> Int
countNotes (PathEnd notes) = length notes
countNotes (Path notes edges rst) = length notes + countNotes rst
sampleBaselines
:: (StatefulGen g IO)
=> g
-> MWC.GenIO
-> Hyper PVParams
-> Piece
-> IO [Double]
sampleBaselines gen genMWC posterior (name, _, _, surface) = do
derivsTry <-
replicateM nBaselines $
runExceptT $
Greedy.parseRandom'
gen
protoVoiceEvaluator
surface
let derivs = rights derivsTry
putStrLn $ " collected " <> show (length derivs) <> " samples for " <> name
let baselines = flip fmap derivs $ \ana -> do
trace <- observeDerivation' (anaDerivation ana)
pure $ derivationLogProb' genMWC posterior trace
baselines <- traverse sequence baselines -- maaaaagic
fmap catMaybes $ forM baselines $ \case
Left err -> putStrLn err >> pure Nothing
Right val -> pure $ Just val
summarize :: [Double] -> (Double, Double)
summarize xs = (Stats.mean sample, Stats.stdDev sample)
where
sample = V.fromList xs
comparePerNote
:: (StatefulGen g IO)
=> g
-> MWC.GenIO
-> Hyper PVParams
-> (Piece, [Piece])
-> IO (Double, Double, Double, Double, [Double])
comparePerNote gen genMWC prior (test@(tstName, _, tstTrace, tstSurface), train) =
do
putStrLn $ "testing on " <> tstName
posterior <- learn prior train
-- compute normalized logprobs
let nnotes = int2Double $ countNotes tstSurface
logpPrior <- derivationLogProb' genMWC prior tstTrace
logpPost <- derivationLogProb' genMWC posterior tstTrace
let logppnPrior = logpPrior / nnotes
logppnPost = logpPost / nnotes
baselines <- sampleBaselines gen genMWC posterior test
let (basemean, basestd) = summarize baselines
basemeanpn = basemean / nnotes
basestdpn = basestd / nnotes
putStrLn $ " nnotes: " <> show nnotes
putStrLn $ " logppn prior: " <> show logppnPrior <> " nats"
putStrLn $ " logppn posterior: " <> show logppnPost <> " nats"
putStrLn $
" logppn baseline: mean="
<> show basemeanpn
<> ", std="
<> show basestdpn
putStrLn $
" baselines top 5: "
<> show
(drop 95 $ (/ nnotes) <$> L.sort baselines)
putStrLn $ " perplexity prior: " <> show (exp $ negate logppnPrior)
putStrLn $ " perplexity posterior: " <> show (exp $ negate logppnPost)
putStrLn $ " Δlogppn: " <> show (logppnPost - logppnPrior) <> " nats"
pure (logpPrior, logpPost, nnotes, basemean, baselines)
-- plotting
-- --------
a % b = a Plt.% Plt.mp Plt.# b
infixl 5 %
showSplits
:: [Double] -> [[Double]] -> [Double] -> [String] -> IO (Either String String)
showSplits logppns blogppns counts testpieces =
Plt.file "splits.svg" $
Plt.readData (logppns, blogppns, counts, testpieces)
% "import numpy as np"
% "import pandas as pd"
% "import seaborn as sns"
% "from matplotlib.lines import Line2D"
% "(logppns, blogppns, counts, pieces) = tuple(map(np.array, data))"
% "baselines = pd.concat([pd.DataFrame({'logppn': bppns, 'piece': piece}) for bppns, piece in zip(blogppns, pieces)])"
% "testscores = pd.DataFrame({'logppn': logppns, 'piece': pieces})"
% "colors = sns.color_palette()"
% "fig, ax = plot.subplots(figsize=(10,5))"
% "sns.boxplot(ax=ax, y='piece', x='logppn', data=baselines, whis=(2,98), color=colors[0], fliersize=4)"
% "sns.scatterplot(ax=ax, y='piece', x='logppn', data=testscores, color=colors[1])"
% "ax.set_xlabel('log probability per note')"
% "ax.invert_yaxis()"
% "ax.legend(title='derivations', handles=[Line2D([0], [0], color='w', marker='d', markerfacecolor=colors[0]), Line2D([0], [0], color='w', marker='o', markerfacecolor=colors[1])], labels=['random', 'annotated'])"
% "fig.tight_layout()"
% "fig.savefig('splits.pdf')"
% "fig.savefig('splits.png')"