-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex4p.cpp
343 lines (308 loc) · 12.5 KB
/
ex4p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// MFEM Example 4 - Parallel Version
//
// Compile with: make ex4p
//
// Sample runs: mpirun -np 4 ex4p -m ../data/square-disc.mesh
// mpirun -np 4 ex4p -m ../data/star.mesh
// mpirun -np 4 ex4p -m ../data/beam-tet.mesh
// mpirun -np 4 ex4p -m ../data/beam-hex.mesh
// mpirun -np 4 ex4p -m ../data/beam-hex.mesh -o 2 -pa
// mpirun -np 4 ex4p -m ../data/escher.mesh -o 2 -sc
// mpirun -np 4 ex4p -m ../data/fichera.mesh -o 2 -hb
// mpirun -np 4 ex4p -m ../data/fichera-q2.vtk
// mpirun -np 4 ex4p -m ../data/fichera-q3.mesh -o 2 -sc
// mpirun -np 4 ex4p -m ../data/square-disc-nurbs.mesh -o 3
// mpirun -np 4 ex4p -m ../data/beam-hex-nurbs.mesh -o 3
// mpirun -np 4 ex4p -m ../data/periodic-square.mesh -no-bc
// mpirun -np 4 ex4p -m ../data/periodic-cube.mesh -no-bc
// mpirun -np 4 ex4p -m ../data/amr-quad.mesh
// mpirun -np 3 ex4p -m ../data/amr-quad.mesh -o 2 -hb
// mpirun -np 4 ex4p -m ../data/amr-hex.mesh -o 2 -sc
// mpirun -np 4 ex4p -m ../data/amr-hex.mesh -o 2 -hb
// mpirun -np 4 ex4p -m ../data/ref-prism.mesh -o 1
// mpirun -np 4 ex4p -m ../data/octahedron.mesh -o 1
// mpirun -np 4 ex4p -m ../data/star-surf.mesh -o 3 -hb
//
// Device sample runs:
// mpirun -np 4 ex4p -m ../data/star.mesh -pa -d cuda
// mpirun -np 4 ex4p -m ../data/star.mesh -pa -d raja-cuda
// mpirun -np 4 ex4p -m ../data/star.mesh -pa -d raja-omp
// mpirun -np 4 ex4p -m ../data/beam-hex.mesh -pa -d cuda
//
// Description: This example code solves a simple 2D/3D H(div) diffusion
// problem corresponding to the second order definite equation
// -grad(alpha div F) + beta F = f with boundary condition F dot n
// = <given normal field>. Here, we use a given exact solution F
// and compute the corresponding r.h.s. f. We discretize with
// Raviart-Thomas finite elements.
//
// The example demonstrates the use of H(div) finite element
// spaces with the grad-div and H(div) vector finite element mass
// bilinear form, as well as the computation of discretization
// error when the exact solution is known. Bilinear form
// hybridization and static condensation are also illustrated.
//
// We recommend viewing examples 1-3 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Exact solution, F, and r.h.s., f. See below for implementation.
void F_exact(const Vector &, Vector &);
void f_exact(const Vector &, Vector &);
double freq = 1.0, kappa;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
bool set_bc = true;
bool static_cond = false;
bool hybridization = false;
bool pa = false;
const char *device_config = "cpu";
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&set_bc, "-bc", "--impose-bc", "-no-bc", "--dont-impose-bc",
"Impose or not essential boundary conditions.");
args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact"
" solution.");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&hybridization, "-hb", "--hybridization", "-no-hb",
"--no-hybridization", "Enable hybridization.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
kappa = freq * M_PI;
// 3. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
// 4. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume, as well as periodic meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
int sdim = mesh->SpaceDimension();
// 5. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement. We choose
// 'ref_levels' to be the largest number that gives a final mesh with no
// more than 1,000 elements.
{
int ref_levels =
(int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
{
int par_ref_levels = 2;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh->UniformRefinement();
}
}
// 7. Define a parallel finite element space on the parallel mesh. Here we
// use the Raviart-Thomas finite elements of the specified order.
FiniteElementCollection *fec = new RT_FECollection(order-1, dim);
ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
HYPRE_BigInt size = fespace->GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of finite element unknowns: " << size << endl;
}
// 8. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, the boundary conditions are defined
// by marking all the boundary attributes from the mesh as essential
// (Dirichlet) and converting them to a list of true dofs.
Array<int> ess_tdof_list;
if (pmesh->bdr_attributes.Size())
{
Array<int> ess_bdr(pmesh->bdr_attributes.Max());
ess_bdr = set_bc ? 1 : 0;
fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 9. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system, which in this case is
// (f,phi_i) where f is given by the function f_exact and phi_i are the
// basis functions in the finite element fespace.
VectorFunctionCoefficient f(sdim, f_exact);
ParLinearForm *b = new ParLinearForm(fespace);
b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
b->Assemble();
// 10. Define the solution vector x as a parallel finite element grid function
// corresponding to fespace. Initialize x by projecting the exact
// solution. Note that only values from the boundary faces will be used
// when eliminating the non-homogeneous boundary condition to modify the
// r.h.s. vector b.
ParGridFunction x(fespace);
VectorFunctionCoefficient F(sdim, F_exact);
x.ProjectCoefficient(F);
// 11. Set up the parallel bilinear form corresponding to the H(div)
// diffusion operator grad alpha div + beta I, by adding the div-div and
// the mass domain integrators.
Coefficient *alpha = new ConstantCoefficient(1.0);
Coefficient *beta = new ConstantCoefficient(1.0);
ParBilinearForm *a = new ParBilinearForm(fespace);
if (pa) { a->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
a->AddDomainIntegrator(new DivDivIntegrator(*alpha));
a->AddDomainIntegrator(new VectorFEMassIntegrator(*beta));
// 12. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, static condensation,
// hybridization, etc.
FiniteElementCollection *hfec = NULL;
ParFiniteElementSpace *hfes = NULL;
if (static_cond)
{
a->EnableStaticCondensation();
}
else if (hybridization)
{
hfec = new DG_Interface_FECollection(order-1, dim);
hfes = new ParFiniteElementSpace(pmesh, hfec);
a->EnableHybridization(hfes, new NormalTraceJumpIntegrator(),
ess_tdof_list);
}
a->Assemble();
OperatorPtr A;
Vector B, X;
a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);
if (myid == 0 && !pa)
{
cout << "Size of linear system: "
<< A.As<HypreParMatrix>()->GetGlobalNumRows() << endl;
}
// 13. Define and apply a parallel PCG solver for A X = B with the 2D AMS or
// the 3D ADS preconditioners from hypre. If using hybridization, the
// system is preconditioned with hypre's BoomerAMG. In the partial
// assembly case, use Jacobi preconditioning.
Solver *prec = NULL;
CGSolver *pcg = new CGSolver(MPI_COMM_WORLD);
pcg->SetOperator(*A);
pcg->SetRelTol(1e-12);
pcg->SetMaxIter(2000);
pcg->SetPrintLevel(1);
if (hybridization) { prec = new HypreBoomerAMG(*A.As<HypreParMatrix>()); }
else if (pa) { prec = new OperatorJacobiSmoother(*a, ess_tdof_list); }
else
{
ParFiniteElementSpace *prec_fespace =
(a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace);
if (dim == 2) { prec = new HypreAMS(*A.As<HypreParMatrix>(), prec_fespace); }
else { prec = new HypreADS(*A.As<HypreParMatrix>(), prec_fespace); }
}
pcg->SetPreconditioner(*prec);
pcg->Mult(B, X);
// 14. Recover the parallel grid function corresponding to X. This is the
// local finite element solution on each processor.
a->RecoverFEMSolution(X, *b, x);
// 15. Compute and print the L^2 norm of the error.
{
double error = x.ComputeL2Error(F);
if (myid == 0)
{
cout << "\n|| F_h - F ||_{L^2} = " << error << '\n' << endl;
}
}
// 16. Save the refined mesh and the solution in parallel. This output can
// be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << *pmesh << x << flush;
}
// 18. Free the used memory.
delete pcg;
delete prec;
delete hfes;
delete hfec;
delete a;
delete alpha;
delete beta;
delete b;
delete fespace;
delete fec;
delete pmesh;
return 0;
}
// The exact solution (for non-surface meshes)
void F_exact(const Vector &p, Vector &F)
{
int dim = p.Size();
double x = p(0);
double y = p(1);
// double z = (dim == 3) ? p(2) : 0.0; // Uncomment if F is changed to depend on z
F(0) = cos(kappa*x)*sin(kappa*y);
F(1) = cos(kappa*y)*sin(kappa*x);
if (dim == 3)
{
F(2) = 0.0;
}
}
// The right hand side
void f_exact(const Vector &p, Vector &f)
{
int dim = p.Size();
double x = p(0);
double y = p(1);
// double z = (dim == 3) ? p(2) : 0.0; // Uncomment if f is changed to depend on z
double temp = 1 + 2*kappa*kappa;
f(0) = temp*cos(kappa*x)*sin(kappa*y);
f(1) = temp*cos(kappa*y)*sin(kappa*x);
if (dim == 3)
{
f(2) = 0;
}
}