-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualization.py
77 lines (66 loc) · 2.6 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import time
'''
The visualization class is responsible for visualizing results from training a cnn
'''
class Visualization:
def visualize_losses(self, train_loss, val_loss, name="", timestamp=0):
assert(len(train_loss) == len(val_loss))
epochs = [i for i in range(1,len(train_loss)+1)]
plt.figure("loss")
plt.plot(epochs, train_loss, 'bs', label="training loss")
plt.plot(epochs, val_loss, 'ro', label="validation loss")
plt.xlabel("epochs")
plt.ylabel("loss")
plt.savefig("figures/losses_" + name + "_" + str(timestamp) + ".png")
plt.show()
def visualize_accuracy(self, accuracy, name="", timestamp=0):
epochs = [i for i in range(1,len(accuracy)+1)]
plt.figure("accuracy")
plt.plot(epochs, accuracy, 'bs')
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.savefig("figures/accuracy_" + name + "_" + str(timestamp) + ".png")
plt.show()
def visualize_filters(self, filters, name="", timestamp=0):
plt.figure("filters")
num_filters = filters.shape[0]
for i in range(num_filters):
plt.subplot(num_filters/10 + 1, 10, i+1)
temp = filters[i]
temp_d = self.deprocess_image(temp)
plt.imshow(temp_d)
plt.axis('off')
plt.tight_layout(pad=-1.0, w_pad=0, h_pad=-3.0)
plt.savefig("figures/filters_" + name + "_" + str(timestamp) + ".png", bbox_inches='tight')
plt.show()
def visualize_filters_2(self, filters, name="", timestamp=0):
plt.figure("filters")
num_filters = filters.shape[0]
for i in range(num_filters):
plt.subplot(num_filters/10 + 1, 10, i+1)
temp = filters[i]
temp_trans = np.abs(temp.transpose())
plt.imshow(temp_trans*255)
plt.axis('off')
plt.tight_layout(pad=-1.0, w_pad=0, h_pad=-3.0)
plt.savefig("figures/filters_" + name + "_" + str(timestamp) + ".png", bbox_inches='tight')
plt.show()
# Code of this method is fully copied from
# https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
def deprocess_image(self,x):
# normalize tensor: center on 0., ensure std is 0.1
x -= x.mean()
x /= (x.std() + 1e-5)
x *= 0.1
# clip to [0, 1]
x += 0.5
x = np.clip(x, 0, 1)
# convert to RGB array
x *= 255
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x