Skip to content

Latest commit

 

History

History
71 lines (43 loc) · 2.23 KB

README.rst

File metadata and controls

71 lines (43 loc) · 2.23 KB

rcal

GitHub Actions CI

Calibrating reviews from multiple reviewers over the course of multiple days. See the report for details.

Installation

To install:

pip install git+https://github.com/jtiosue/rcal

Or:

git clone https://github.com/jtiosue/rcal.git
cd rcal
pip install -e .

Example usage

See the notebook examples for a detailed example. Here we do a quick Hello World example.

from rcal import calibrate_parameters

data = {
    ('r1', 'p0', 0): 1,  # reviewer 1 gives person 0 a 1 star rating on day 0
    ('r1', 'p1', 1): 3,  # reviewer 1 gives person 1 a 3 star rating on day 1
    ('r1', 'p2', 2): 3,  # reviewer 1 gives person 2 a 3 star rating on day 2

    ('r2', 'p2', 0): 3,  # reviewer 2 gives person 2 a 3 star rating on day 0
    ('r2', 'p0', 1): 3,  # reviewer 2 gives person 0 a 3 star rating on day 1
    ('r2', 'p1', 2): 4,  # reviewer 2 gives person 1 a 4 star rating on day 2

    ('r3', 'p1', 0): 2,  # reviewer 3 gives person 1 a 2 star rating on day 0
    ('r3', 'p2', 1): 2,  # reviewer 3 gives person 2 a 2 star rating on day 1
    ('r3', 'p0', 2): 3,  # reviewer 3 gives person 0 a 3 star rating on day 2

    ('r1', 'p3', 0): 1,  # reviewer 1 gives person 3 a 1 star rating on day 0
    ('r2', 'p3', 1): 1,  # reviewer 2 gives person 3 a 1 star rating on day 1
    ('r3', 'p3', 2): 1   # reviewer 3 gives person 3 a 1 star rating on day 2
}

# rating_delta is the max score (5 stars) minus the min score (1 star)
cp = calibrate_parameters(data, rating_delta=4)

# rescale the parameters so that the calibrated reviews are between 0 and 1
cp.rescale_parameters(data, (0, 1))

# get the calibrated data with these parameters
print(cp.calibrate_data(data))

# get the improvement rates
print(cp.improvement_rates())