-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathRun.py
115 lines (94 loc) · 3.5 KB
/
Run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from pdb import set_trace as T
import sys, shutil
import time
import numpy as np
import torch
import torch as t
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
from torch.autograd import Variable
import utils
from LanguageBatcher import LanguageBatcher
from HyperLinear import HyperLinear
#Load PTB
def dataBatcher(batchSz, context, minContext):
print('Loading Data...')
train = 'data/ptb.train.txt'
valid = 'data/ptb.valid.txt'
test = 'data/ptb.test.txt'
vocab = 'data/vocab.txt'
trainBatcher = LanguageBatcher(train, vocab,
batchSz, context, 0, rand=True)
validBatcher = LanguageBatcher(valid, vocab,
batchSz, context, minContext)
testBatcher = LanguageBatcher(test, vocab,
batchSz, context, minContext)
print('Data Loaded.')
return trainBatcher, validBatcher, testBatcher
class Network(nn.Module):
def __init__(self, cell, vocabDim, embedDim,
unembedDim, ansDim, context, embedDrop):
super(Network, self).__init__()
self.cell, self.context, self.drop = cell, context, embedDrop
self.embed = nn.Embedding(vocabDim, embedDim)
self.unembed = nn.Linear(unembedDim, ansDim)
def forward(self, x, trainable):
x, s, out = self.embed(x), 0, []
for i in range(self.context):
o, s, sMetrics = self.cell(x[:, i], s, trainable)
out += [o]
batchSz = x.size(0)
x = t.stack(out, 1).view(batchSz*self.context, -1)
return self.unembed(x).view(batchSz, self.context, -1)
def train(net, opt, trainBatcher, validBatcher, saver, minContext):
while True:
start = time.time()
#Run epochs
trainLoss, trainAcc = utils.runData(net, opt, trainBatcher,
trainable=True, verbose=True)
validLoss, validAcc = utils.runData(net, opt, validBatcher,
minContext=minContext)
trainLoss, validLoss = np.exp(trainLoss), np.exp(validLoss)
#Print statistics
print('\nEpoch: ', saver.epoch(), ', Time: ', time.time()-start)
print('| Train Perp: ', trainLoss,
', Train Acc: ', trainAcc)
print('| Valid Perp: ', validLoss,
', Valid Acc: ', validAcc)
if np.isnan(validLoss) or np.isnan(trainLoss):
print('Got a bad update. Resetting epoch')
saver.refresh(net)
else:
saver.update(net, trainLoss, trainAcc, validLoss, validAcc)
def test(net, batcher, minContext, name='Test'):
start = time.time()
loss, acc = utils.runData(net, None, batcher,
minContext=minContext)
loss = np.exp(loss)
#Print statistics
print('Time: ', time.time()-start)
print(name, ' Perp: ', loss, ', Acc: ', acc)
def modelDef(net, cuda=True):
if cuda: net.cuda()
utils.initWeights(net)
utils.modelSize(net)
return net
def run(cell, depth, h, vocabDim, batchSz, embedDim, embedDrop,
context, minContext, eta, saveName, load, isTest):
trainBatcher, validBatcher, testBatcher = dataBatcher(
batchSz, context, minContext)
net = modelDef(Network(cell, vocabDim, embedDim, h,
vocabDim, context, embedDrop))
opt = t.optim.Adam(net.parameters(), lr=eta)
saver = utils.SaveManager(saveName)
if load: saver.load(net)
if not isTest:
train(net, opt, trainBatcher, validBatcher, saver, minContext)
else:
#Up the test context
minContext = 95
test(net, validBatcher, minContext, name='Valid')
test(net, testBatcher, minContext, name='Test')