-
Notifications
You must be signed in to change notification settings - Fork 17
/
HyperLinear.py
32 lines (28 loc) · 1.05 KB
/
HyperLinear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn import Module
from pdb import set_trace as T
class HyperLinear(Module):
def __init__(self, in_features, out_features):
super(HyperLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
self.bias = Parameter(torch.Tensor(out_features))
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, z):
weight = self.weight
z = torch.cat((z,z), 1)
Wx = self._backend.Linear()(input, weight)*z
Wx += self.bias.expand_as(Wx)
return Wx
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'