-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathpreprocess.py
328 lines (253 loc) · 11.1 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from __future__ import division
from collections import defaultdict
import sys, os
import argparse
import madmom
import numpy as np
import pandas as pd
import pretty_midi
import librosa
import h5py
import math
from config import load_config
import numpy as np
def readmm(d,args):
ipath = os.path.join(d,'input.dat')
note_range = 88
n_bins = int(args['bin_multiple']) * note_range
window_size = 7
mmi = np.memmap(ipath, mode='r')
i = np.reshape(mmi,(-1,window_size,n_bins))
opath = os.path.join(d,'output.dat')
mmo = np.memmap(opath, mode='r')
o = np.reshape(mmo,(-1,note_range))
return i,o
class DataGen:
def __init__(self, dirpath, batch_size,args,num_files=1):
print 'initializing gen for '+dirpath
self.mmdirs = os.listdir(dirpath)
self.spe = 0 #steps per epoch
self.dir = dirpath
for mmdir in self.mmdirs:
print mmdir
_,outputs = readmm(os.path.join(self.dir,mmdir),args)
self.spe += len(outputs) // batch_size
#print cnt
self.num_files = num_files
self.batch_size = batch_size
self.current_file_idx = 0
print 'starting with ', self.mmdirs[self.current_file_idx:self.current_file_idx+self.num_files]
for j in range(self.num_files):
mmdir = os.path.join(self.dir,self.mmdirs[self.current_file_idx+j])
i,o = readmm(mmdir,args)
if j == 0:
self.inputs,self.outputs = i,o
print 'set inputs,outputs'
else:
self.inputs = np.concatenate((self.inputs,i))
self.outputs = np.concatenate((self.outputs,o))
print 'concatenated'
self.current_file_idx = (self.current_file_idx + 1) % len(self.mmdirs)
self.i = 0
def steps(self):
return self.spe
def next(self):
while True:
if (self.i+1)*self.batch_size > self.inputs.shape[0]:
#return rest and then switch files
x,y = self.inputs[self.i*self.batch_size:],self.outputs[self.i*self.batch_size:]
self.i = 0
if len(self.mmdirs) > 1: # no need to open any new files if we only deal with one, like for validation
print 'switching to ', self.mmdirs[self.current_file_idx:self.current_file_idx+self.num_files]
for j in range(self.num_files):
mmdir = os.path.join(self.dir,self.mmdirs[self.current_file_idx+j])
i,o = readmm(mmdir,args)
if j == 0:
self.inputs,self.output = i,o
else:
self.inputs = np.concatenate((self.inputs,i))
self.outputs = np.concatenate((self.outputs,o))
self.current_file_idx = (self.current_file_idx + 1) % len(self.mmdirs)
else:
x,y = self.inputs[self.i*self.batch_size:(self.i+1)*self.batch_size],self.outputs[self.i*self.batch_size:(self.i+1)*self.batch_size]
self.i += 1
yield x,y
'''def load_data(dirpa):
print('loading data from '+dirpath)
hdf5_file = os.listdir(dirpath)[0]
with h5py.File(os.path.join(dirpath,hdf5_file), 'r') as hf:
inputs = hf['-inputs'][:]
outputs = hf['-outputs'][:]
return inputs,outputs'''
sr = 22050
hop_length = 512
window_size = 7
min_midi = 21
max_midi = 108
def wav2inputnp(audio_fn,spec_type='cqt',bin_multiple=3):
print("wav2inputnp")
bins_per_octave = 12 * bin_multiple #should be a multiple of 12
n_bins = (max_midi - min_midi + 1) * bin_multiple
#down-sample,mono-channel
y,_ = librosa.load(audio_fn,sr)
S = librosa.cqt(y,fmin=librosa.midi_to_hz(min_midi), sr=sr, hop_length=hop_length,
bins_per_octave=bins_per_octave, n_bins=n_bins)
S = S.T
#TODO: LogScaleSpectrogram?
'''
if spec_type == 'cqt':
#down-sample,mono-channel
y,_ = librosa.load(audio_fn,sr)
S = librosa.cqt(y,fmin=librosa.midi_to_hz(min_midi), sr=sr, hop_length=hop_length,
bins_per_octave=bins_per_octave, n_bins=n_bins)
S = S.T
else:
#down-sample,mono-channel
y = madmom.audio.signal.Signal(audio_fn, sample_rate=sr, num_channels=1)
S = madmom.audio.spectrogram.LogarithmicFilteredSpectrogram(y,fmin=librosa.midi_to_hz(min_midi),
hop_size=hop_length, num_bands=bins_per_octave, fft_size=4096)'''
#S = librosa.amplitude_to_db(S)
S = np.abs(S)
minDB = np.min(S)
print np.min(S),np.max(S),np.mean(S)
S = np.pad(S, ((window_size//2,window_size//2),(0,0)), 'constant', constant_values=minDB)
windows = []
# IMPORTANT NOTE:
# Since we pad the the spectrogram frame,
# the onset frames are actually `offset` frames.
# To obtain a window of the center frame at each true index, we take a slice from i to i+window_size
# starting at frame 0 of the padded spectrogram
for i in range(S.shape[0]-window_size+1):
w = S[i:i+window_size,:]
windows.append(w)
#print inputs
x = np.array(windows)
return x
def mid2outputnp(pm_mid,times):
piano_roll = pm_mid.get_piano_roll(fs=sr,times=times)[min_midi:max_midi+1].T
piano_roll[piano_roll > 0] = 1
return piano_roll
def joinAndCreate(basePath,new):
newPath = os.path.join(basePath,new)
if not os.path.exists(newPath):
os.mkdir(newPath)
return newPath
def isSplitFolder(ddir):
return ddir == 'train' or ddir == 'test' or ddir == 'val'
def organize(args):
valCnt = 1
testPrefix = 'ENS'
path = os.path.join('models',args['model_name'])
dpath = os.path.join(path,'data')
train_path = joinAndCreate(dpath,'train')
test_path = joinAndCreate(dpath,'test')
val_path = joinAndCreate(dpath,'val')
for ddir in os.listdir(dpath):
if os.path.isdir(os.path.join(dpath,ddir)) and not isSplitFolder(ddir):
#print h5file
if ddir.startswith(testPrefix):
os.rename(os.path.join(dpath,ddir), os.path.join(test_path,ddir))
elif valCnt > 0:
os.rename(os.path.join(dpath,ddir), os.path.join(val_path,ddir))
valCnt -= 1
else:
os.rename(os.path.join(dpath,ddir), os.path.join(train_path,ddir))
data_dir = '../maps/'
def preprocess(args):
#params
path = os.path.join('models',args['model_name'])
config = load_config(os.path.join(path,'config.json'))
bin_multiple = int(args['bin_multiple'])
spec_type = args['spec_type']
framecnt = 0
# hack to deal with high PPQ from MAPS
# https://github.com/craffel/pretty-midi/issues/112
pretty_midi.pretty_midi.MAX_TICK = 1e10
for s in os.listdir(data_dir):
subdir = os.path.join(data_dir,s)
if not os.path.isdir(subdir):
continue
# recursively search in subdir
print subdir
inputs,outputs = [],[]
addCnt, errCnt = 0,0
for dp, dn, filenames in os.walk(subdir):
# in each level of the directory, look at filenames ending with .mid
for f in filenames:
# if there exists a .wav file and .midi file with the same name
if f.endswith('.wav'):
audio_fn = f
fprefix = audio_fn.split('.wav')[0]
mid_fn = fprefix + '.mid'
txt_fn = fprefix + '.txt'
if mid_fn in filenames:
# wav2inputnp
audio_fn = os.path.join(dp,audio_fn)
# mid2outputnp
mid_fn = os.path.join(dp,mid_fn)
pm_mid = pretty_midi.PrettyMIDI(mid_fn)
inputnp = wav2inputnp(audio_fn,spec_type=spec_type,bin_multiple=bin_multiple)
times = librosa.frames_to_time(np.arange(inputnp.shape[0]),sr=sr,hop_length=hop_length)
outputnp = mid2outputnp(pm_mid,times)
# check that num onsets is equal
if inputnp.shape[0] == outputnp.shape[0]:
print("adding to dataset fprefix {}".format(fprefix))
addCnt += 1
framecnt += inputnp.shape[0]
print("framecnt is {}".format(framecnt))
inputs.append(inputnp)
outputs.append(outputnp)
else:
print("error for fprefix {}".format(fprefix))
errCnt += 1
print(inputnp.shape)
print(outputnp.shape)
print("{} examples in dataset".format(addCnt))
print("{} examples couldnt be processed".format(errCnt))
# concatenate dynamic list to numpy list of example
if addCnt:
inputs = np.concatenate(inputs)
outputs = np.concatenate(outputs)
fn = subdir.split('/')[-1]
if not fn:
fn = subdir.split('/')[-2]
#fn += '.h5'
# save inputs,outputs to hdf5 file
datapath = joinAndCreate(path,'data')
fnpath = joinAndCreate(datapath,fn)
mmi = np.memmap(filename=os.path.join(fnpath,'input.dat'), mode='w+',shape=inputs.shape)
mmi[:] = inputs[:]
mmo = np.memmap(filename=os.path.join(fnpath,'output.dat'), mode='w+',shape=outputs.shape)
mmo[:] = outputs[:]
del mmi
del mmo
'''with h5py.File(os.path.join(datapath,fn), 'w') as hf:
hf.create_dataset("-inputs", data=inputs)
hf.create_dataset("-outputs", data=outputs)
without dB, i'm just going to not worry about feature scaling
if args.zn:
nppath = os.path.join(path,'xn')
if os.path.isfile(nppath+'.npz'):
npzfile = np.load(nppath+'.npz')
x,x2,n = npzfile['x'],npzfile['x2'],npzfile['n']
else:
x,x2,n = 0,0,0
x += np.sum(inputs,axis=0)
x2 += np.sum(inputs**2,axis=0)
n += inputs.shape[0]
print x,x2,n
print 'mean={}'.format(x/n)
print 'var={}'.format(x2/n-(x/n)**2)
np.savez(nppath,x=x,x2=x2,n=n)'''
if __name__ == '__main__':
# Set up command-line argument parsing
parser = argparse.ArgumentParser(
description='Preprocess MIDI/Audio file pairs into ingestible data')
parser.add_argument('model_name',
help='model name. will use config from directory and save preprocessed data to it')
parser.add_argument('data_dir',
help='Path to data dir, searched recursively, used for naming HDF5 file')
parser.add_argument('--no-zn', dest='zn', action='store_false')
parser.set_defaults(zn=True)
args = vars(parser.parse_args())
preprocess(args)