-
Notifications
You must be signed in to change notification settings - Fork 0
/
KNearestNeighbours.py
50 lines (39 loc) · 1.31 KB
/
KNearestNeighbours.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
from collections import Counter
import warnings
import random
import pandas as pd
def k_nearest_neighbours(data, prediction, k=3):
if len(data)>=k:
warnings.warn('K is set to a value less than voting groups!')
distances = []
for group in data:
for features in data[group]:
euclidean_distance = np.linalg.norm(np.array(features)-np.array(prediction))
distances.append([euclidean_distance, group])
votes = [i[1] for i in sorted(distances)[:k]]
vote_result = Counter(votes).most_common(1)[0][0]
return vote_result
df = pd.read_csv('breast-cancer-wisconsin.data.txt')
df.replace('?', -99999, inplace = True)
df.drop(['id'],1, inplace=True)
data = df.astype(float).values.tolist()
random.shuffle(data)
test_size = 0.2
train_set = {2:[],4:[]}
test_set = {2:[],4:[]}
train_data = data[:-int(test_size*len(data))]
test_data = data[-int(test_size*len(data)):]
for i in train_data:
train_set[i[-1]].append(i[:-1])
for i in test_data:
test_set[i[-1]].append(i[:-1])
correct = 0
cnt = 0
for group in test_set:
for each in test_set[group]:
vote = k_nearest_neighbours(train_set, each, k=5)
if group == vote:
correct +=1
cnt+=1
print('accuracy', correct/cnt)