-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
72 lines (58 loc) · 3.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import algorithms
import croupier
import dice
np.set_printoptions(precision=3)
OBSERVATION_LENGTH = 300
OBSERVATIONS = 300
# Prepare environment for our simulation
# fair_dice = dice.Dice(np.array([1/6, 1/6, 1/6, 1/6, 1/6, 1/6]))
# loaded_dice = dice.Dice(np.array([1/10, 1/10, 1/10, 1/10, 1/10, 1/2]))
fair_dice = dice.Dice(np.array([1/5, 1/5, 1/5, 1/5, 1/5, 0]))
loaded_dice = dice.Dice(np.array([0, 0, 0, 0, 0, 1]))
initial_dice_probability = np.array([0.5, 0.5]) # Croupier can use either of dices initially
transition_matrix = np.array([
[0.95, 0.05], # Fair -> Fair = 0.95, Fair -> Loaded = 0.05
[0.10, 0.90], # Loaded -> Fair = 0.10, Loaded -> Loaded = 0.90
])
my_croupier = croupier.Croupier(fair_dice, loaded_dice, initial_dice_probability, transition_matrix)
# Collect some observations about the croupier's work for later analysis
observations, used_dices = my_croupier.get_observations(OBSERVATION_LENGTH)
#
# Viterbi & Aposteriori Probabilities
#
# Pass observations through Viterbi algorithm
viterbi_probabilities = algorithms.calculate_viterbi_probabilities(observations, fair_dice, loaded_dice,
initial_dice_probability, transition_matrix)
# Calculate forward & backward probabilities to calculate aposteriori probabilities
alpha_probabilities = algorithms.calculate_forward_probabilities(observations, fair_dice, loaded_dice,
initial_dice_probability, transition_matrix)
beta_probabilities = algorithms.calculate_backward_probabilities(observations, fair_dice, loaded_dice,
initial_dice_probability, transition_matrix)
# Now, let's calculate aposteriori probabilities based on alphas and betas
aposteriori_probabilities = np.multiply(alpha_probabilities, beta_probabilities)
print('+---------------------------+')
print('| Viterbi & Aposteriori |')
print('+---------------------------+')
for t in range(OBSERVATIONS):
print(f'Observation: {observations[t]} Dice: {used_dices[t]} '
f'| Viterbi: {viterbi_probabilities[t]} Guess: {np.argmax(viterbi_probabilities[t])} '
f'| Alpha: {alpha_probabilities[t]} | Beta: {beta_probabilities[t]} '
f'| Aposteriori: {aposteriori_probabilities[t]} Guess: {np.argmax(aposteriori_probabilities[t])}')
print('')
#
# Baum-Welch Training
#
print('+----------------------------+')
print('| Baum-Welch Algorithm |')
print('+----------------------------+')
# Pass training observations to Baum-Welch algorithm
multiple_observations = [my_croupier.get_observations(OBSERVATION_LENGTH)[0] for _ in range(OBSERVATIONS)]
first_dice, second_dice, initial_dice_probability, transition_matrix = algorithms.baum_welch(multiple_observations)
print('+--------------------------+')
print('| Baum-Welch Summary |')
print('+--------------------------+')
print('Dice #1:', first_dice.probabilities)
print('Dice #2:', second_dice.probabilities)
print('Initial Dice Probabilities:', initial_dice_probability)
print('Transision Matrix:', transition_matrix)