-
Notifications
You must be signed in to change notification settings - Fork 0
/
FLM_Module.py
95 lines (74 loc) · 3.46 KB
/
FLM_Module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import cv2
import mediapipe as mp
import time
from gaze_estimation.gaze_estimator.common import Face
import numpy as np
NUM_FACE = 2
class FaceLandMarks:
def __init__(self, staticMode=False,maxFace=NUM_FACE, minDetectionCon=0.5, minTrackCon=0.5):
self.staticMode = False
self.maxFace = maxFace
self.minDetectionCon = minDetectionCon
self.minTrackCon = minTrackCon
self.mpDraw = mp.solutions.drawing_utils
self.mpFaceMesh = mp.solutions.face_mesh
#self.faceMesh = self.mpFaceMesh.FaceMesh(static_image_mode=self.staticMode,max_num_faces=self.maxFace,min_detection_confidence=self.minDetectionCon,min_tracking_confidence=self.minTrackCon)
self.faceMesh = self.mpFaceMesh.FaceMesh(static_image_mode=False,max_num_faces=3)
# self.faceMesh = self.mpFaceMesh.FaceMesh(self.staticMode, self.maxFace, self.minDetectionCon, self.minTrackCon)
self.drawSpec = self.mpDraw.DrawingSpec(thickness=1, circle_radius=1)
def findFaceLandmark(self, img, draw=True):
self.imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.faceMesh.process(self.imgRGB)
faces = []
detected = []
h, w = img.shape[:2]
if self.results.multi_face_landmarks:
# for faceLms in self.results.multi_face_landmarks:
# if draw:
# self.mpDraw.draw_landmarks(img, faceLms, self.mpFaceMesh.FACEMESH_TESSELATION, self.drawSpec, self.drawSpec)
# face = []
# for id, lm in enumerate(faceLms.landmark):
# ih, iw, ic = img.shape
# x, y = int(lm.x * iw), int(lm.y * ih)
# face.append([x,y])
# faces.append(face)
for prediction in self.results.multi_face_landmarks:
pts = np.array([(pt.x * w, pt.y * h)
for pt in prediction.landmark],
dtype=np.float64)
bbox = np.vstack([pts.min(axis=0), pts.max(axis=0)])
bbox = np.round(bbox).astype(np.int32)
detected.append(Face(bbox, pts))
return detected
def findFaceLandmark_final(self, img, draw=True):
self.imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.faceMesh.process(self.imgRGB)
faces = []
if self.results.multi_face_landmarks:
for faceLms in self.results.multi_face_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, faceLms, self.mpFaceMesh.FACEMESH_TESSELATION, self.drawSpec, self.drawSpec)
face = []
for id, lm in enumerate(faceLms.landmark):
ih, iw, ic = img.shape
x, y = int(lm.x * iw), int(lm.y * ih)
face.append([x,y])
faces.append(face)
return img, faces
# def main():
# cap = cv2.VideoCapture(0)
# pTime = 0
# detector = FaceLandMarks()
# while True:
# success, img = cap.read()
# img, faces = detector.findFaceLandmark(img)
# if len(faces)!=0:
# print(len(faces))
# cTime = time.time()
# fps = 1 / (cTime - pTime)
# pTime = cTime
# cv2.putText(img, f'FPS:{int(fps)}', (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# cv2.imshow("Test", img)
# cv2.waitKey(1)
# if __name__ == "__main__":
# main()