-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
114 lines (92 loc) · 3.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#Copyright (C) 2018 jotaro-sama
#
#This program is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
#along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import numpy as np
import sys
if len(sys.argv) < 2:
print("Please pass samples as a parameter!")
quit()
samples = sys.argv[1]
states = ["rain", "not_rain"]
observations = ["umbrella", "not_umbrella"]
#probability of states given state
transition_model = {
'rain' : [0.7, 0.3],
'not_rain' : [0.3, 0.7],
}
fwd_transition_model = np.array(
[np.array([0.7, 0.3]),
np.array([0.3, 0.7])]
)
#probability of observations given state
emission_probability = {
'rain' : [0.9, 0.1],
'not_rain' : [0.2, 0.8],
}
emission_true = np.zeros(shape=(2,2))
emission_true[0][0] = 0.9
emission_true[1][1] = 0.2
emission_false = np.zeros(shape=(2,2))
emission_false[0][0] = 0.1
emission_false[1][1] = 0.8
#c = fattore di normalizzazione (1/somma dei due)
emission = {
"umbrella" : emission_true,
"not_umbrella" : emission_false
}
seq_length = 20
sequences = 15
observed = []
actual_states = []
with open(samples, "r") as samples:
lines = samples.readlines()
for line in lines:
observed.append(line.split(":")[1].split(",")[1].strip())
actual_states.append(line.split(":")[1].split(",")[0].strip())
fwd = []
prev = np.array([0.5, 0.5]).reshape(2,1)
for i in range(seq_length):
fwd.append(prev)
marg = (0, 0)
unnorm = emission[observed[i]].dot(np.transpose(fwd_transition_model)).dot(prev)
prev = (1.0/(unnorm[0][0] + unnorm[1][0])) * unnorm
#outfile.write(str(i+1) + ":" + str(prev[0][0]) + "," + str(prev[1][0]) + "\n")
bwd = []
prev = np.array([1.0, 1.0]).reshape(2,1)
for i in range(seq_length):
bwd.append(prev)
marg = (0, 0)
unnorm = np.transpose(fwd_transition_model).dot(emission[observed[i]]).dot(prev)
prev = (1.0/(unnorm[0][0] + unnorm[1][0])) * unnorm
#outfile.write(str(i+1) + ":" + str(prev[0][0]) + "," + str(prev[1][0]) + "\n")
marginals = []
with open("marginals.txt", "w") as outfile:
for i in range(seq_length):
j = seq_length-1-i
f = fwd[i]
b = bwd[j]
unnorm = np.array([ f[0][0]*b[0][0], f[1][0]*b[1][0] ]).reshape(2,1)
smooth = (1.0/(unnorm[0][0] + unnorm[1][0])) * unnorm
outfile.write(str(i+1) + ":" + str(smooth[0][0]) + "," + str(smooth[1][0]) + "\n")
marginals.append(smooth)
with open("accuracy.txt", "w") as outfile:
for i in range(seq_length):
print(marginals[i][0][0])
print(marginals[i][1][0])
print(actual_states[i])
if (marginals[i][0][0] < marginals[i][1][0] and observed[i] == "rain") or (marginals[i][0][0] > marginals[i][1][0] and actual_states[i] == "not_rain"):
outfile.write(str(i+1) + ":" + "wrong\n")
else:
outfile.write(str(i+1) + ":" + "right\n")