-
Notifications
You must be signed in to change notification settings - Fork 1
/
myswimmer2.py
301 lines (240 loc) · 10.4 KB
/
myswimmer2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Procedurally generated Swimmer domain."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
# Internal dependencies.
from dm_control import mujoco
from dm_control.rl import control
from dm_control.suite import base
from dm_control.suite import common
from dm_control.suite.utils import randomizers
from dm_control.utils import containers
from dm_control.utils import rewards
from lxml import etree
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
from dm_control.mujoco.wrapper.mjbindings import mjlib
import torch.utils.data as data
from torch.utils.data import DataLoader
import numpy as np
import networkx as nx
import torch.optim as optim
import matplotlib.pyplot as plt
from gn_models import init_graph_features, FFGN
import torch
from tensorboardX import SummaryWriter
from datetime import datetime
import os
import sys
from scipy.stats import pearsonr
from train_gn import SwimmerDataset
from utils import *
import argparse
_DEFAULT_TIME_LIMIT = 30
_CONTROL_TIMESTEP = .02 # (Seconds)
SUITE = containers.TaggedTasks()
def get_model_and_assets(n_joints):
"""Returns a tuple containing the model XML string and a dict of assets.
Args:
n_joints: An integer specifying the number of joints in the swimmer.
Returns:
A tuple `(model_xml_string, assets)`, where `assets` is a dict consisting of
`{filename: contents_string}` pairs.
"""
return _make_model(n_joints), common.ASSETS
@SUITE.add('benchmarking')
def swimmer6(time_limit=_DEFAULT_TIME_LIMIT, random=None):
"""Returns a 6-link swimmer."""
return _make_swimmer(6, time_limit, random=random)
@SUITE.add('benchmarking')
def swimmer15(time_limit=_DEFAULT_TIME_LIMIT, random=None):
"""Returns a 15-link swimmer."""
return _make_swimmer(15, time_limit, random=random)
def swimmer(n_links=3, time_limit=_DEFAULT_TIME_LIMIT,
random=None):
"""Returns a swimmer with n links."""
return _make_swimmer(n_links, time_limit, random=random)
def _make_swimmer(n_joints, time_limit=_DEFAULT_TIME_LIMIT, random=None):
"""Returns a swimmer control environment."""
model_string, assets = get_model_and_assets(n_joints)
physics = Physics.from_xml_string(model_string, assets=assets)
task = Swimmer(random=random)
return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP)
def _make_model(n_bodies):
"""Generates an xml string defining a swimmer with `n_bodies` bodies."""
if n_bodies < 3:
raise ValueError('At least 3 bodies required. Received {}'.format(n_bodies))
mjcf = etree.fromstring(common.read_model('swimmer.xml'))
head_body = mjcf.find('./worldbody/body')
actuator = etree.SubElement(mjcf, 'actuator')
sensor = etree.SubElement(mjcf, 'sensor')
parent = head_body
for body_index in xrange(n_bodies - 1):
site_name = 'site_{}'.format(body_index)
child = _make_body(body_index=body_index)
child.append(etree.Element('site', name=site_name))
joint_name = 'joint_{}'.format(body_index)
joint_limit = 360.0/n_bodies
joint_range = '{} {}'.format(-joint_limit, joint_limit)
child.append(etree.Element('joint', {'name': joint_name,
'range': joint_range}))
motor_name = 'motor_{}'.format(body_index)
actuator.append(etree.Element('motor', name=motor_name, joint=joint_name))
velocimeter_name = 'velocimeter_{}'.format(body_index)
sensor.append(etree.Element('velocimeter', name=velocimeter_name,
site=site_name))
gyro_name = 'gyro_{}'.format(body_index)
sensor.append(etree.Element('gyro', name=gyro_name, site=site_name))
parent.append(child)
parent = child
# Move tracking cameras further away from the swimmer according to its length.
cameras = mjcf.findall('./worldbody/body/camera')
scale = n_bodies / 6.0
for cam in cameras:
if cam.get('mode') == 'trackcom':
old_pos = cam.get('pos').split(' ')
new_pos = ' '.join([str(float(dim) * scale) for dim in old_pos])
cam.set('pos', new_pos)
return etree.tostring(mjcf, pretty_print=True)
def _make_body(body_index):
"""Generates an xml string defining a single physical body."""
body_name = 'segment_{}'.format(body_index)
visual_name = 'visual_{}'.format(body_index)
inertial_name = 'inertial_{}'.format(body_index)
body = etree.Element('body', name=body_name)
body.set('pos', '0 .1 0')
etree.SubElement(body, 'geom', {'class': 'visual', 'name': visual_name})
etree.SubElement(body, 'geom', {'class': 'inertial', 'name': inertial_name})
return body
class Physics(mujoco.Physics):
"""Physics simulation with additional features for the swimmer domain."""
def nose_to_target(self):
"""Returns a vector from nose to target in local coordinate of the head."""
nose_to_target = (self.named.data.geom_xpos['target'] -
self.named.data.geom_xpos['nose'])
head_orientation = self.named.data.xmat['head'].reshape(3, 3)
return nose_to_target.dot(head_orientation)[:2]
def nose_to_target_dist(self):
"""Returns the distance from the nose to the target."""
return np.linalg.norm(self.nose_to_target())
def body_velocities(self):
"""Returns local body velocities: x,y linear, z rotational."""
xvel_local = self.data.sensordata[12:].reshape((-1, 6))
vx_vy_wz = [0, 1, 5] # Indices for linear x,y vels and rotational z vel.
return xvel_local[:, vx_vy_wz].ravel()
def body_abs_velocities(self):
"""Returns local body velocities: x,y linear, z rotational."""
#xvel_local = self.data.sensordata[12:].reshape((-1, 6))
#from IPython import embed; embed()
#vx_vy_wz = [0, 1, 5] # Indices for linear x,y vels and rotational z vel.
vel = np.zeros(6)
vels = []
for i in range(1,7):
mjlib.mj_objectVelocity(self.model.ptr, self.data.ptr, 1, i, vel, 0)
vels.append(vel[[3,4,2]].copy())
return np.array(vels).ravel()
def joints(self):
"""Returns all internal joint angles (excluding root joints)."""
return self.data.qpos[3:]
def body_state(self):
state = np.zeros((6,3))
i = 0
for k in ['head'] + ['segment_{}'.format(i) for i in range(5)]:
state[i,:2] = self.named.data.xpos[k][:2]
state[i,2] = np.arctan2(-self.named.data.xmat[k][1], self.named.data.xmat[k][0])
#print(state[i,2])
#from IPython import embed; embed()
i += 1
return state.ravel()
class Swimmer(base.Task):
"""A swimmer `Task` to reach the target or just swim."""
def __init__(self, random=None):
"""Initializes an instance of `Swimmer`.
Args:
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
super(Swimmer, self).__init__(random=random)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
Initializes the swimmer orientation to [-pi, pi) and the relative joint
angle of each joint uniformly within its range.
Args:
physics: An instance of `Physics`.
"""
# Random joint angles:
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
# Random target position.
close_target = self.random.rand() < .2 # Probability of a close target.
target_box = .3 if close_target else 2
xpos, ypos = self.random.uniform(-target_box, target_box, size=2)
physics.named.model.geom_pos['target', 'x'] = xpos
physics.named.model.geom_pos['target', 'y'] = ypos
physics.named.model.light_pos['target_light', 'x'] = xpos
physics.named.model.light_pos['target_light', 'y'] = ypos
def before_step(self, action, physics):
# true joint angle + abs position
G1 = nx.path_graph(6).to_directed()
obs = self.get_observation(physics)
state = np.zeros((41,))
state[:5] = obs["joints"]
state[5:5 + 18] = obs["body_velocities"]
state[5 + 18 + 1:] = obs["abs"]
delta_state = np.zeros((41,))
last_state = np.zeros((41,))
normalizers = torch.load('normalize.pth')
in_normalizer = normalizers['in_normalizer']
out_normalizer = normalizers['out_normalizer']
std = in_normalizer.get_std()
node_feat_size = 6
edge_feat_size = 3
graph_feat_size = 10
gn = FFGN(graph_feat_size, node_feat_size, edge_feat_size).cuda()
gn.load_state_dict(torch.load("model_trained.pth"))
G_out = gn(in_normalizer.normalize(G1))
use_cuda = True
if use_cuda:
action, delta_state, last_state = action.cuda(), delta_state.cuda(), last_state.cuda()
init_graph_features(G1, graph_feat_size, node_feat_size, edge_feat_size, cuda=True, bs=200)
load_graph_features(G1, action, last_state, delta_state, bs=200, noise=0.03, std=std)
G_out = gn(in_normalizer.normalize(G1))
G_out = out_normalizer.inormalize(G_out)
pred_state = []
pred_joint = []
for node in G_out.nodes():
pred_state.append(G_out.nodes[node]['feat'][:, :3])
for edge in G_out.edges():
pred_joint.append(G_out[edge[0]][edge[1]]['feat'][:,0])
print(pred_joint.shape)
print(pred_state.shape)
def get_observation(self, physics):
"""Returns an observation of joint angles, body velocities and target."""
obs = collections.OrderedDict()
obs['joints'] = physics.joints()
obs['to_target'] = physics.nose_to_target()
obs['body_velocities'] = physics.body_abs_velocities()
obs['abs'] = physics.body_state()
return obs
def get_reward(self, physics):
"""Returns a smooth reward."""
target_size = physics.named.model.geom_size['target', 0]
return rewards.tolerance(physics.nose_to_target_dist(),
bounds=(0, target_size),
margin=5*target_size,
sigmoid='long_tail')