-
Notifications
You must be signed in to change notification settings - Fork 29
/
ant.py
337 lines (270 loc) · 14.1 KB
/
ant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import numpy as np
import copy
from vrptw_base import VrptwGraph
from threading import Event
class Ant:
def __init__(self, graph: VrptwGraph, start_index=0):
super()
self.graph = graph
self.current_index = start_index
self.vehicle_load = 0
self.vehicle_travel_time = 0
self.travel_path = [start_index]
self.arrival_time = [0]
self.index_to_visit = list(range(graph.node_num))
self.index_to_visit.remove(start_index)
self.total_travel_distance = 0
def clear(self):
self.travel_path.clear()
self.index_to_visit.clear()
def move_to_next_index(self, next_index):
# 更新蚂蚁路径
self.travel_path.append(next_index)
self.total_travel_distance += self.graph.node_dist_mat[self.current_index][next_index]
dist = self.graph.node_dist_mat[self.current_index][next_index]
self.arrival_time.append(self.vehicle_travel_time + dist)
if self.graph.nodes[next_index].is_depot:
# 如果一下个位置为服务器点,则要将车辆负载等清空
self.vehicle_load = 0
self.vehicle_travel_time = 0
else:
# 更新车辆负载、行驶距离、时间
self.vehicle_load += self.graph.nodes[next_index].demand
# 如果早于客户要求的时间窗(ready_time),则需要等待
self.vehicle_travel_time += dist + max(self.graph.nodes[next_index].ready_time - self.vehicle_travel_time - dist, 0) + self.graph.nodes[next_index].service_time
self.index_to_visit.remove(next_index)
self.current_index = next_index
def index_to_visit_empty(self):
return len(self.index_to_visit) == 0
def get_active_vehicles_num(self):
return self.travel_path.count(0)-1
def check_condition(self, next_index) -> bool:
"""
检查移动到下一个点是否满足约束条件
:param next_index:
:return:
"""
if self.vehicle_load + self.graph.nodes[next_index].demand > self.graph.vehicle_capacity:
return False
dist = self.graph.node_dist_mat[self.current_index][next_index]
wait_time = max(self.graph.nodes[next_index].ready_time - self.vehicle_travel_time - dist, 0)
service_time = self.graph.nodes[next_index].service_time
# 检查访问某一个旅客之后,能否回到服务店
if self.vehicle_travel_time + dist + wait_time + service_time + self.graph.node_dist_mat[next_index][0] > self.graph.nodes[0].due_time:
return False
# 不可以服务due time之外的旅客
if self.vehicle_travel_time + dist > self.graph.nodes[next_index].due_time:
return False
return True
def cal_next_index_meet_constrains(self):
"""
找出所有从当前位置(ant.current_index)可达的customer
:return:
"""
next_index_meet_constrains = []
for next_ind in self.index_to_visit:
if self.check_condition(next_ind):
next_index_meet_constrains.append(next_ind)
return next_index_meet_constrains
def cal_nearest_next_index(self, next_index_list):
"""
从待选的customers中选择,离当前位置(ant.current_index)最近的customer
:param next_index_list:
:return:
"""
current_ind = self.current_index
nearest_ind = next_index_list[0]
min_dist = self.graph.node_dist_mat[current_ind][next_index_list[0]]
for next_ind in next_index_list[1:]:
dist = self.graph.node_dist_mat[current_ind][next_ind]
if dist < min_dist:
min_dist = dist
nearest_ind = next_ind
return nearest_ind
@staticmethod
def cal_total_travel_distance(graph: VrptwGraph, travel_path):
distance = 0
current_ind = travel_path[0]
for next_ind in travel_path[1:]:
distance += graph.node_dist_mat[current_ind][next_ind]
current_ind = next_ind
return distance
def try_insert_on_path(self, node_id, stop_event: Event):
"""
尝试性地将node_id插入当前的travel_path中
插入的位置不能违反载重,时间,行驶距离的限制
如果有多个位置,则找出最优的位置
:param node_id:
:return:
"""
best_insert_index = None
best_distance = None
for insert_index in range(len(self.travel_path)):
if stop_event.is_set():
# print('[try_insert_on_path]: receive stop event')
return
if self.graph.nodes[self.travel_path[insert_index]].is_depot:
continue
# 找出insert_index的前面的最近的depot
front_depot_index = insert_index
while front_depot_index >= 0 and not self.graph.nodes[self.travel_path[front_depot_index]].is_depot:
front_depot_index -= 1
front_depot_index = max(front_depot_index, 0)
# check_ant从front_depot_index出发
check_ant = Ant(self.graph, self.travel_path[front_depot_index])
# 让check_ant 走过 path中下标从front_depot_index开始到insert_index-1的点
for i in range(front_depot_index+1, insert_index):
check_ant.move_to_next_index(self.travel_path[i])
# 开始尝试性地对排序后的index_to_visit中的结点进行访问
if check_ant.check_condition(node_id):
check_ant.move_to_next_index(node_id)
else:
continue
# 如果可以到node_id,则要保证vehicle可以行驶回到depot
for next_ind in self.travel_path[insert_index:]:
if stop_event.is_set():
# print('[try_insert_on_path]: receive stop event')
return
if check_ant.check_condition(next_ind):
check_ant.move_to_next_index(next_ind)
# 如果回到了depot
if self.graph.nodes[next_ind].is_depot:
temp_front_index = self.travel_path[insert_index-1]
temp_back_index = self.travel_path[insert_index]
check_ant_distance = self.total_travel_distance - self.graph.node_dist_mat[temp_front_index][temp_back_index] + \
self.graph.node_dist_mat[temp_front_index][node_id] + self.graph.node_dist_mat[node_id][temp_back_index]
if best_distance is None or check_ant_distance < best_distance:
best_distance = check_ant_distance
best_insert_index = insert_index
break
# 如果不可以回到depot,则返回上一层
else:
break
return best_insert_index
def insertion_procedure(self, stop_even: Event):
"""
为每个未访问的结点尝试性地找到一个合适的位置,插入到当前的travel_path
插入的位置不能违反载重,时间,行驶距离的限制
:return:
"""
if self.index_to_visit_empty():
return
success_to_insert = True
# 直到未访问的结点中没有一个结点可以插入成功
while success_to_insert:
success_to_insert = False
# 获取未访问的结点
ind_to_visit = np.array(copy.deepcopy(self.index_to_visit))
# 获取为访问客户点的demand,降序排序
demand = np.zeros(len(ind_to_visit))
for i, ind in zip(range(len(ind_to_visit)), ind_to_visit):
demand[i] = self.graph.nodes[ind].demand
arg_ind = np.argsort(demand)[::-1]
ind_to_visit = ind_to_visit[arg_ind]
for node_id in ind_to_visit:
if stop_even.is_set():
# print('[insertion_procedure]: receive stop event')
return
best_insert_index = self.try_insert_on_path(node_id, stop_even)
if best_insert_index is not None:
self.travel_path.insert(best_insert_index, node_id)
self.index_to_visit.remove(node_id)
# print('[insertion_procedure]: success to insert %d(node id) in %d(index)' % (node_id, best_insert_index))
success_to_insert = True
del demand
del ind_to_visit
if self.index_to_visit_empty():
print('[insertion_procedure]: success in insertion')
self.total_travel_distance = Ant.cal_total_travel_distance(self.graph, self.travel_path)
@staticmethod
def local_search_once(graph: VrptwGraph, travel_path: list, travel_distance: float, i_start, stop_event: Event):
# 找出path中所有的depot的位置
depot_ind = []
for ind in range(len(travel_path)):
if graph.nodes[travel_path[ind]].is_depot:
depot_ind.append(ind)
# 将self.travel_path分成多段,每段以depot开始,以depot结束,称为route
for i in range(i_start, len(depot_ind)):
for j in range(i + 1, len(depot_ind)):
if stop_event.is_set():
return None, None, None
for start_a in range(depot_ind[i - 1] + 1, depot_ind[i]):
for end_a in range(start_a, min(depot_ind[i], start_a + 6)):
for start_b in range(depot_ind[j - 1] + 1, depot_ind[j]):
for end_b in range(start_b, min(depot_ind[j], start_b + 6)):
if start_a == end_a and start_b == end_b:
continue
new_path = []
new_path.extend(travel_path[:start_a])
new_path.extend(travel_path[start_b:end_b + 1])
new_path.extend(travel_path[end_a:start_b])
new_path.extend(travel_path[start_a:end_a])
new_path.extend(travel_path[end_b + 1:])
depot_before_start_a = depot_ind[i - 1]
depot_before_start_b = depot_ind[j - 1] + (end_b - start_b) - (end_a - start_a) + 1
if not graph.nodes[new_path[depot_before_start_b]].is_depot:
raise RuntimeError('error')
# 判断发生改变的route a是否是feasible的
success_route_a = False
check_ant = Ant(graph, new_path[depot_before_start_a])
for ind in new_path[depot_before_start_a + 1:]:
if check_ant.check_condition(ind):
check_ant.move_to_next_index(ind)
if graph.nodes[ind].is_depot:
success_route_a = True
break
else:
break
check_ant.clear()
del check_ant
# 判断发生改变的route b是否是feasible的
success_route_b = False
check_ant = Ant(graph, new_path[depot_before_start_b])
for ind in new_path[depot_before_start_b + 1:]:
if check_ant.check_condition(ind):
check_ant.move_to_next_index(ind)
if graph.nodes[ind].is_depot:
success_route_b = True
break
else:
break
check_ant.clear()
del check_ant
if success_route_a and success_route_b:
new_path_distance = Ant.cal_total_travel_distance(graph, new_path)
if new_path_distance < travel_distance:
# print('success to search')
# 删除路径中连在一起的depot中的一个
for temp_ind in range(1, len(new_path)):
if graph.nodes[new_path[temp_ind]].is_depot and graph.nodes[new_path[temp_ind - 1]].is_depot:
new_path.pop(temp_ind)
break
return new_path, new_path_distance, i
else:
new_path.clear()
return None, None, None
def local_search_procedure(self, stop_event: Event):
"""
对当前的已经访问完graph中所有节点的travel_path使用cross进行局部搜索
:return:
"""
new_path = copy.deepcopy(self.travel_path)
new_path_distance = self.total_travel_distance
times = 100
count = 0
i_start = 1
while count < times:
temp_path, temp_distance, temp_i = Ant.local_search_once(self.graph, new_path, new_path_distance, i_start, stop_event)
if temp_path is not None:
count += 1
del new_path, new_path_distance
new_path = temp_path
new_path_distance = temp_distance
# 设置i_start
i_start = (i_start + 1) % (new_path.count(0)-1)
i_start = max(i_start, 1)
else:
break
self.travel_path = new_path
self.total_travel_distance = new_path_distance
print('[local_search_procedure]: local search finished')