Skip to content

Latest commit

 

History

History
230 lines (158 loc) · 9.45 KB

persistent-volumes.md

File metadata and controls

230 lines (158 loc) · 9.45 KB

WARNING WARNING WARNING WARNING WARNING

PLEASE NOTE: This document applies to the HEAD of the source tree

If you are using a released version of Kubernetes, you should refer to the docs that go with that version.

The latest 1.0.x release of this document can be found [here](http://releases.k8s.io/release-1.0/docs/user-guide/persistent-volumes.md).

Documentation for other releases can be found at releases.k8s.io.

Persistent Volumes and Claims

This document describes the current state of PersistentVolumes in Kubernetes. Familiarity with volumes is suggested.

Table of Contents

Introduction

Managing storage is a distinct problem from managing compute. The PersistentVolume subsystem provides an API for users and administrators that abstracts details of how storage is provided from how it is consumed. To do this we introduce two new API resources: PersistentVolume and PersistentVolumeClaim.

A PersistentVolume (PV) is a piece of networked storage in the cluster that has been provisioned by an administrator. It is a resource in the cluster just like a node is a cluster resource. PVs are volume plugins like Volumes, but have a lifecycle independent of any individual pod that uses the PV. This API object captures the details of the implementation of the storage, be that NFS, iSCSI, or a cloud-provider-specific storage system.

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a pod. Pods consume node resources and PVCs consume PV resources. Pods can request specific levels of resources (CPU and Memory). Claims can request specific size and access modes (e.g, can be mounted once read/write or many times read-only).

Please see the detailed walkthrough with working examples.

Lifecycle of a volume and claim

PVs are resources in the cluster. PVC are requests for those resources and also act as claim checks to the resource. The interaction between PVs and PVCs follows this lifecycle:

Provisioning

A cluster administrator creates some number of PVs. They carry the details of the real storage that is available for use by cluster users. They exist in the Kubernetes API and are available for consumption.

Binding

A user creates a PersistentVolumeClaim with a specific amount of storage requested and with certain access modes. A control loop in the master watches for new PVCs, finds a matching PV (if possible), and binds them together. The user will always get at least what they asked for, but the volume may be in excess of what was requested.

Claims will remain unbound indefinitely if a matching volume does not exist. Claims will be bound as matching volumes become available. For example, a cluster provisioned with many 50Gi volumes would not match a PVC requesting 100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

Using

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that volume for a pod. For those volumes that support multiple access modes, the user specifies which mode desired when using their claim as a volume in a pod.

Once a user has a claim and that claim is bound, the bound PV belongs to the user for as long as she needs it. Users schedule Pods and access their claimed PVs by including a persistentVolumeClaim in their Pod's volumes block. See below for syntax details.

Releasing

When a user is done with their volume, they can delete the PVC objects from the API which allows reclamation of the resource. The volume is considered "released" when the claim is deleted, but it is not yet available for another claim. The previous claimant's data remains on the volume which must be handled according to policy.

Reclaiming

A PersistentVolume's reclaim policy tells the cluster what to do with the volume after it's released. Currently, volumes can either be Retained or Recycled. Retention allows for manual reclamation of the resource. For those volume plugins that support it, recycling performs a basic scrub ("rm -rf /thevolume/*") on the volume and makes it available again for a new claim.

Types of Persistent Volumes

PersistentVolumes are implemented as plugins. Kubernetes currently supports the following plugins:

  • GCEPersistentDisk
  • AWSElasticBlockStore
  • NFS
  • iSCSI
  • RBD (Ceph Block Device)
  • Glusterfs
  • HostPath (single node testing only)

Persistent Volumes

Each PV contains a spec and status, which is the specification and status of the volume.

  apiVersion: v1
  kind: PersistentVolume
  metadata:
    name: pv0003
  spec:
    capacity:
      storage: 5Gi
    accessModes:
      - ReadWriteOnce
    persistentVolumeReclaimPolicy: Recycle    
    nfs:
      path: /tmp
      server: 172.17.0.2

Capacity

Generally, a PV will have a specific storage capacity. This is set using the PV's capacity attribute. See the Kubernetes Resource Model to understand the units expected by capacity.

Currently, storage size is the only resource that can be set or requested. Future attributes may include IOPS, throughput, etc.

Access Modes

PersistentVolumes can be mounted on a host in any way supported by the resource provider. Providers will have different capabilities and each PV's access modes are set to the specific modes supported by that particular volume. For example, NFS can support multiple read/write clients, but a specific NFS PV might be exported on the server as read-only. Each PV gets its own set of access modes describing that specific PV's capabilities.

The access modes are:

  • ReadWriteOnce -- the volume can be mounted as read-write by a single node
  • ReadOnlyMany -- the volume can be mounted read-only by many nodes
  • ReadWriteMany -- the volume can be mounted as read-write by many nodes

In the CLI, the access modes are abbreviated to:

  • RWO - ReadWriteOnce
  • ROX - ReadOnlyMany
  • RWX - ReadWriteMany

Important! A volume can only be mounted using one access mode at a time, even if it supports many. For example, a GCEPersistentDisk can be mounted as ReadWriteOnce by a single node or ReadOnlyMany by many nodes, but not at the same time.

Recycling Policy

Current recycling policies are:

  • Retain -- manual reclamation
  • Recycle -- basic scrub ("rm -rf /thevolume/*")

Currently, NFS and HostPath support recycling.

Phase

A volume will be in one of the following phases:

  • Available -- a free resource that is not yet bound to a claim
  • Bound -- the volume is bound to a claim
  • Released -- the claim has been deleted, but the resource is not yet reclaimed by the cluster
  • Failed -- the volume has failed its automatic reclamation

The CLI will show the name of the PVC bound to the PV.

PersistentVolumeClaims

Each PVC contains a spec and status, which is the specification and status of the claim.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: myclaim
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 8Gi

Access Modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

Resources

Claims, like pods, can request specific quantities of a resource. In this case, the request is for storage. The same resource model applies to both volumes and claims.

Claims As Volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the pod using the claim. The cluster finds the claim in the pod's namespace and uses it to get the PersistentVolume backing the claim. The volume is then mounted to the host and into the pod.

kind: Pod
apiVersion: v1
metadata:
  name: mypod
spec:
  containers:
    - name: myfrontend
      image: dockerfile/nginx
      volumeMounts:
      - mountPath: "/var/www/html"
        name: mypd
  volumes:
    - name: mypd
      persistentVolumeClaim:
        claimName: myclaim

Analytics