-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_captions.py
93 lines (77 loc) · 4.16 KB
/
train_captions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import argparse
import torch
import torch.nn as nn
import numpy as np
import os
import pickle
from data_loader import get_caption_loader
from model import EncoderRNN, DecoderRNN
from torch.nn.utils.rnn import pack_padded_sequence
from torchvision import transforms
from build_vocab import Vocabulary
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def main(args):
# Create model directory
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
# Load vocabulary wrapper
with open(args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
# Build data loader
data_loader = get_caption_loader(args.caption_path, vocab, 75,
args.batch_size, shuffle=True,
num_workers=args.num_workers)
# Build the models
encoder = EncoderRNN(len(vocab), args.embed_size, args.hidden_size).to(device)
decoder = DecoderRNN(args.embed_size, args.hidden_size, len(vocab), args.num_layers).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
params = list(decoder.parameters()) + list(encoder.embedding.parameters()) + list(encoder.rnn.parameters())
optimizer = torch.optim.Adam(params, lr=args.learning_rate)
# Train the models
total_step = len(data_loader)
for epoch in range(args.num_epochs):
for i, (captions_src, captions_tgt, lengths) in enumerate(data_loader):
# Set mini-batch dataset
captions_src = captions_src.to(device)
captions_tgt = captions_tgt.to(device)
targets = pack_padded_sequence(captions_tgt, lengths, batch_first=True)[0]
# Forward, backward and optimize
enc_output, enc_hidden = encoder(captions_src)
outputs = decoder(enc_hidden[:, -1:, :], captions_tgt, lengths)
loss = criterion(outputs, targets)
decoder.zero_grad()
encoder.zero_grad()
loss.backward()
optimizer.step()
# Print log info
if i % args.log_step == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}'
.format(epoch, args.num_epochs, i, total_step, loss.item(), np.exp(loss.item())))
# Save the model checkpoints
if (i+1) % args.save_step == 0:
torch.save(decoder.state_dict(), os.path.join(
args.model_path, 'decoder-{}-{}.ckpt'.format(epoch+1, i+1)))
torch.save(encoder.state_dict(), os.path.join(
args.model_path, 'encoder-{}-{}.ckpt'.format(epoch+1, i+1)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default='models/' , help='path for saving trained models')
parser.add_argument('--crop_size', type=int, default=224 , help='size for randomly cropping images')
parser.add_argument('--vocab_path', type=str, default='data/vocab.pkl', help='path for vocabulary wrapper')
parser.add_argument('--image_dir', type=str, default='data/resized2014', help='directory for resized images')
parser.add_argument('--caption_path', type=str, default='data/captions_en5_preprocessed.txt', help='path for train annotation json file')
parser.add_argument('--log_step', type=int , default=10, help='step size for prining log info')
parser.add_argument('--save_step', type=int , default=1000, help='step size for saving trained models')
# Model parameters
parser.add_argument('--embed_size', type=int , default=256, help='dimension of word embedding vectors')
parser.add_argument('--hidden_size', type=int , default=512, help='dimension of lstm hidden states')
parser.add_argument('--num_layers', type=int , default=1, help='number of layers in lstm')
parser.add_argument('--num_epochs', type=int, default=5)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--learning_rate', type=float, default=0.001)
args = parser.parse_args()
print(args)
main(args)