forked from elcano/elcano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
laneDetection.py
195 lines (159 loc) · 5.73 KB
/
laneDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import cv2
import numpy as np
from transform import four_point_transform
import argparse
import matplotlib.image as mpimg
from matplotlib import pyplot as plt
import time
def apply_smoothing(image, kernel_size=15):
"""
kernel_size must be positive and odd
"""
return cv2.GaussianBlur(image, (kernel_size, kernel_size), 0)
# What if ROI doesnt contain any lane?
# we can assume that lane is at the rightmost
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", help="path to the image file")
args = vars(ap.parse_args())
image = mpimg.imread(args["image"])
im = plt.imread(args["image"])
ax = plt.gca()
fig = plt.gcf()
# implot = ax.imshow(im)
#
# plt.show()
testImg = cv2.imread(args["image"])
# cv2.imshow('before', testImg)
gray = cv2.cvtColor(testImg,cv2.COLOR_BGR2GRAY)
smoothGray = apply_smoothing(gray)
# Good settings for the canny, going to tweak it and see if we can get it a bit better
#imgEdges = cv2.Canny(smoothGray,100, 200)
imgEdges = cv2.Canny(smoothGray,100, 200)
# cv2.circle(imgEdges, (250, 260), 5, (0, 0, 255), -1)
# cv2.circle(imgEdges, (772, 462), 5, (0, 0, 255), -1)
# cv2.circle(imgEdges, (1104, 666), 5, (0, 0, 255), -1)
# cv2.circle(imgEdges, (211, 666), 5, (0, 0, 255), -1)
minLineLength = 100
maxLineGap = 1
smoothLines = cv2.HoughLinesP(imgEdges,1,np.pi/180,15,minLineLength,maxLineGap)
for x in range(0, len(smoothLines)):
for x1,y1,x2,y2 in smoothLines[x]:
cv2.line(testImg,(x1,y1),(x2,y2),(0,255,0),2)
# implot = ax.imshow(imgEdges)
#
# plt.show()
# cv2.imshow('after', testImg)
# cv2.imshow('edges', imgEdges)
# cv2.waitKey(0)
cv2.destroyAllWindows()
minLineLength = 10
maxLineGap = 1
# coord = [(241, 316), (438, 312), (602, 447), (54, 447)] DSCN0632
#coord = [(251, 314), (443, 306), (616, 435), (85, 445)]
coord = [(251, 314), (443, 306), (85, 445), (616, 435)]
#imageCoord = [(200, 200), (1200, 0), (1200, 700), (0, 700)]
imageCoord = [(400, 400), (1000, 400), (1100, 700), (200, 700)]
challCoord = [(531, 462), (772, 462), (1104, 666), (211, 666)]
# plt.imshow(lines)
# plt.show()
# print(coord)
# warped = four_point_transform(image, np.array(challCoord))
# plt.imshow(testImg), plt.show()
# # plt.imshow(warped), plt.show()
# cv2.waitKey(0)
# cv2.destroyAllWindows()
cap = cv2.VideoCapture('testvideos/calibration/DSCN0612.mov')
# Get current time to calculate FPS
# Initial frames processed in the beginning == 0
numFrames = 0
coordList = []
numPoints = 0
averageX = 0
averageY = 0
averageX2 = 0
averageY2 = 0
def findRightEdge(angle, x1, y1, x2, y2):
global averageX, averageY, averageX2, averageY2,numPoints
# This section finds lines drawn on the right hand side of the video
# Specifically looks to find an edge in the right hand side of the image.
if x2 > 320 and y2 > 240:
# if lineDrawn:
# continue
print("angle = ", angle)
# lineDrawn = True
# if(numFrames % fps == 0):
# coordList.append([x1,y1])
coordList.append([x1, y1])
if numFrames % 50 == 0:
averageX = 0
averageY = 0
numPoints = 0
averageX2 = 0
averageY2 = 0
averageX += x1
averageX2 += x2
averageY2 += y2
averageY += y1
numPoints += 1
print("x1 =", x1)
print("averageX = ", averageX)
print("averageY =", averageY)
def findLeftEdge():
print()
def findEdge(angle, x1, y1, x2, y2):
if angle > 0:
findRightEdge(angle, x1, y1, x2, y2)
else:
findLeftEdge()
while (cap.isOpened()):
# Get number of frames per second
fps = cap.get(cv2.CAP_PROP_FPS)
# print("numFrames", numFrames)
# print("fps =",fps)
ret, frame = cap.read()
if frame is None:
break
roi = frame[200:900, 108:900]
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#cv2.imshow('gray', gray)
high_thresh, thresh_im = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
#cv2.imshow('high thresh',thresh_im)
#cv2.waitKey(0)
lowThresh = 0.5 * high_thresh
edges = cv2.Canny(gray, 100, 200)
kernel = np.ones((3, 3), np.uint8)
#kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
dilation = cv2.dilate(edges, kernel, iterations=1)
im = cv2.bilateralFilter(dilation, 5, 17, 17)
# cv2.imshow('im',im)
lines = cv2.HoughLinesP(im, 1, np.pi / 180.0, 50, np.array([]), 100, 15)
lineDrawn = False
if lines is not None:
for [[x1, y1, x2, y2]] in lines:
#print(x1,x2,y1,y2)
dx, dy = x2 - x1, y2 - y1
angle = np.arctan2(dy, dx) * 180 / (np.pi)
cv2.line(frame, (320, 0), (320, 480), (0, 0, 0), 2)
findEdge(angle, x1, y1, x2, y2)
#if angle > 0:
if numPoints > 0:
cv2.circle(frame, (int(averageX / numPoints), int(averageY / numPoints)), 5, (0, 0, 255), -1)
cv2.circle(frame, (int(averageX2 / numPoints), int(averageY2 / numPoints)), 5, (255, 0, 0), -1)
cv2.line(frame, (int(averageX / numPoints), int(averageY / numPoints)), (int(averageX2 / numPoints), int(averageY2 / numPoints)), (0, 255, 0), 2)
numFrames += 1
cv2.imshow('frame', frame)
# cv2.waitKey(0)
if cv2.waitKey(1) & 0xFF == ord('q'):#if cv2.waitKey(20) == 27:
break
cap.release()
cv2.destroyAllWindows()
# averageX = 0
# averageY = 0
# numCoords = 0
# for coord in coordList:
# print("coords =",coord)
# averageX += coord[0]
# averageY += coord[1]
# numCoords += 1
# print("averageX =", averageX / numCoords)
# print("averageY =", averageY / numCoords)