-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrk_restruc.m
83 lines (76 loc) · 3.39 KB
/
trk_restruc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
function [tracks_out,tiePoint] = trk_restruc(tracks_in,tiePoint)
%TRK_RESTRUC - Restrucutres streamline data between matrix and structure array
%forms. If all streamlines do not have the same length (i.e. TRK_INTERP has not
%been run) then the matrix will be padded with NaNs.
%
% Syntax: [tracks_out,tiePoint] = trk_restruc(tracks_in,tiePoint)
%
% Inputs:
% tracks_in - Tracks in matrix form [nPoints x 3+nScalars x nTracks] or
% Tracks in structure form [1 x nTracks]
% tiePoint - Vertex index closest to the midpoint of the mean tract geometry
% (only relevant if using constant spacing mode for trk_interp)
%
% Outputs:
% tracks_out - Track data in the opposite form
% tiePoint - Modified tiePoint after flipping
%
% Example:
% exDir = '/path/to/along-tract-stats/example';
% subDir = fullfile(exDir, 'subject1');
% trkPath = fullfile(subDir, 'CST_L.trk');
% volPath = fullfile(subDir, 'dti_fa.nii.gz');
% volume = read_avw(volPath);
% [header tracks] = trk_read(trkPath);
% tracks_interp = trk_interp(tracks, 100);
% tracks_interp = trk_flip(header, tracks_interp, [97 110 4]);
% tracks_interp_str = trk_restruc(tracks_interp);
% [header_sc tracks_sc] = trk_add_sc(header, tracks_interp_str, volume, 'FA');
% [scalar_mean scalar_sd] = trk_mean_sc(header_sc, tracks_sc);
%
% Other m-files required: none
% Subfunctions: none
% MAT-files required: none
%
% See also: TRK_READ, TRK_INTERP
% Author: John Colby ([email protected])
% UCLA Developmental Cognitive Neuroimaging Group (Sowell Lab)
% Mar 2010
if nargin < 2, tiePoint = []; end
if isstruct(tracks_in) % Structure --> matrix
nPoints = [tracks_in.nPoints];
[maxPoints ind] = max(nPoints);
tracks_out = nan(maxPoints, size(tracks_in(1).matrix, 2), length(tracks_in));
if length(unique(nPoints))~=1
% If there is a tiePoint given, center the streamlines on this point
if isfield(tracks_in, 'tiePoint')
offset = max([tracks_in.tiePoint]) - tracks_in(ind).tiePoint;
for i=1:length(tracks_in)
indStart = 1 + offset + (tracks_in(ind).tiePoint - tracks_in(i).tiePoint);
tracks_out(indStart:(indStart+tracks_in(i).nPoints-1), 1:size(tracks_in(i).matrix, 2), i) = tracks_in(i).matrix;
end
tracks_out(tracks_out==0) = NaN;
tiePoint = tracks_in(ind).tiePoint + offset;
% If there isn't a tiePoint given, start all streamlines in row 1 and
% only NaN pad the end
else
for i=1:length(tracks_in)
tracks_out(1:size(tracks_in(i).matrix, 1), 1:size(tracks_in(i).matrix, 2), i) = tracks_in(i).matrix;
end
tiePoint = [];
end
% If the streamlines are all the same length, simple algebra will work
else
tracks_out = cat(3, tracks_in.matrix);
tiePoint = [];
end
else % Matrix --> structure
[tracks_out(1:size(tracks_in, 3)).nPoints] = deal([]);
for iTrk=1:size(tracks_in, 3)
tracks_out(iTrk).matrix = tracks_in(:,:,iTrk);
tracks_out(iTrk).nPoints = size(tracks_in, 1);
end
if tiePoint
[tracks_out.tiePoint] = deal(tiePoint);
end
end