-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph-encoder-decoder_L3.py
162 lines (147 loc) · 5.66 KB
/
graph-encoder-decoder_L3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import glob as glob
from torch.autograd import Variable
from reader import get_depth_data
from PIL import Image
path = './checkpoints/GraphEncoderDecoder/L3/'
Train = np.load('iccv_dataset_train.npy')
Val = np.load('iccv_dataset_val.npy')
Test = np.load('iccv_dataset_test.npy')
class GraphEncoderDecoder(nn.Module):
def __init__(self):
super(GraphEncoderDecoder, self).__init__()
self.cnn1 = nn.Conv2d(3,10,kernel_size=(8,8))
self.pool1 = nn.MaxPool2d(4,return_indices=True)
self.cnn2 = nn.Conv2d(10,25,kernel_size=(8,8))
self.pool2 = nn.MaxPool2d(4,return_indices=True)
self.cnn3 = nn.Conv2d(25,50,kernel_size=(5,5))
self.pool3 = nn.MaxPool2d(4,return_indices=True)
self.unpool1 = nn.MaxUnpool2d(4)
self.decnn1 = nn.ConvTranspose2d(50,25,kernel_size=(5,5))
self.unpool2 = nn.MaxUnpool2d(4)
self.decnn2 = nn.ConvTranspose2d(25,10,kernel_size=(8,8))
self.unpool3 = nn.MaxUnpool2d(4)
self.decnn3 = nn.ConvTranspose2d(10,1,kernel_size=(8,8))
self.a = nn.Linear(2*12,1)
self.W = nn.Linear(12,12)
self.P = nn.Linear(12,100)
self.hidden = nn.Linear(2100,2000)
def forward(self,x,g):
g = [torch.Tensor([gi]).cuda() for gi in g]
x = F.relu(self.cnn1(x))
s1 = x.size()
x, i1 = self.pool1(x)
x = F.relu(self.cnn2(x))
s2 = x.size()
x, i2 = self.pool2(x)
x = F.relu(self.cnn3(x))
s3 = x.size()
x, i3 = self.pool3(x)
presize = x.size()
h = []
for i,hi in enumerate(g):
a_weights = []
h_neighbors = []
for j, hj in enumerate(g):
a = F.relu(self.a(torch.cat((self.W(hi),self.W(hj)),dim=1)))
a_weights.append(a)
h_neighbors.append(hj)
s = []
for aw, hn in zip(a_weights,h_neighbors):
s.append(self.W(aw*hn))
h.append(sum(s))
h = torch.cat(h,dim=0)
latent = self.P(h)
latent = torch.mean(latent,dim=0)
x = torch.cat((x.flatten(),latent),dim=0)
x = self.hidden(x)
x = x.view(presize)
x = self.unpool1(x,i3,s3)
x = F.relu(self.decnn1(x))
x = self.unpool2(x,i2,s2)
x = F.relu(self.decnn2(x))
x = self.unpool3(x,i1,s1)
x = F.relu(self.decnn3(x))
return x
model = GraphEncoderDecoder().cuda()
learning_rate = 1e-3
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
max_epochs = 15
import time
candidate_models = []
validation_losses = []
# Training and Validation
for epoch in range(max_epochs):
epoch_loss = []
start = time.time()
for train in Train:
dirs = glob.glob(train)
gdata,data = get_depth_data(dirs)
gd = [g[0] for g in gdata]
x,y = np.array(Image.open(data[0][0])),data[0][1]
x,y = x.reshape(1,3,480,640),y.reshape(1,1,480,640)
x = Variable(torch.Tensor(x).cuda(), requires_grad=True)
y = Variable(torch.Tensor(y).cuda(), requires_grad=False)
pred = model(x,gd)
loss = loss_fn(pred,y)
epoch_loss.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Validation
validation_loss = []
for val in Val:
val_x,val_y = [],[]
dirs = glob.glob(val)
g_data, data = get_depth_data(dirs)
gd = [g[0] for g in g_data]
val_x, val_y = np.array(Image.open(data[0][0])), data[0][1]
val_x, val_y = val_x.reshape(1,3,480,640), val_y.reshape(1,1,480,640)
val_x = Variable(torch.Tensor(val_x).cuda(),requires_grad=False)
val_pred = model.forward(val_x,gd)
val_y = Variable(torch.Tensor(val_y).cuda(),requires_grad=False)
val_loss = loss_fn(val_pred,val_y)
validation_loss.append(val_loss.item())
validation_losses.append(np.array(validation_loss).mean())
end = time.time()
model_path = path + 'GraphEncoderDecoder-3_layer-epoch_'+str(epoch)+'.model'
torch.save(model.state_dict(), model_path)
candidate_models.append(model_path)
print('epoch loss: ' + str(np.array(epoch_loss).mean()) + ', Val loss: ' + str(np.array(validation_loss).mean()) + ', Time: ' + str((end-start)))
if len(validation_losses) > 1:
check = (((validation_losses[-2] - validation_losses[-1])/(validation_losses[-2])) * 100)
if check < 1.0 and check > 0:
break
if check < 0:
candidate_models.pop()
break
# Test
test_model = GraphEncoderDecoder().cuda()
test_model.load_state_dict(torch.load(candidate_models[-1]))
test_loss = []
for test in Test:
test_x,test_y = [],[]
dirs = glob.glob(test)
g_data, data = get_depth_data(dirs)
gd = [g[0] for g in g_data]
test_x, test_y = np.array(Image.open(data[0][0])), data[0][1]
test_x, test_y = test_x.reshape(1,3,480,640), test_y.reshape(1,1,480,640)
test_x = Variable(torch.Tensor(test_x).cuda(),requires_grad=False)
test_pred = test_model.forward(test_x,gd).detach().cpu().numpy()
test_pred = test_pred.reshape(480,640)
for box in g_data:
info,dis = box
info = [int(i) for i in info[:4]]
# str(startX),str(startY),str(endX),str(endY)
startX ,startY, endX, endY = info[0], info[1], info[2], info[3]
pred_dis = test_pred[startY:endY,startX:endX]/1000.0
pred_dis = pred_dis[pred_dis > 0]
dis_error = abs(pred_dis.mean() - dis)
test_loss.append(dis_error)
np.save(path+'test_loss.npy',test_loss)
print('Test Loss:',np.mean(test_loss))