Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AutoEncoder building for automatic feature extraction #25

Open
gcoter opened this issue Feb 10, 2018 · 0 comments
Open

AutoEncoder building for automatic feature extraction #25

gcoter opened this issue Feb 10, 2018 · 0 comments

Comments

@gcoter
Copy link

gcoter commented Feb 10, 2018

Hello,

I would like to share an idea I recently had.

Currently, I have the feeling that there are two kinds of auto-ml tools: those which build neural networks (and yours looks very promising) and those which tune and combine classifiers or regressors (auto-sklearn and TPOT for instance).

I think we would benefit from using both in some cases. For example, suppose I want to classify images. I can't use auto-sklearn or TPOT directly on images. However, I could:

  1. Use DEvol to train a multilayer autoencoder which minimizes the reconstruction error
  2. Use this trained autoencoder as a sklearn transformer to retrieve the extracted features (in the middle layer)
  3. Provide those features to TPOT and/or auto-sklearn

The final result is a sklearn pipeline which has been built automatically from the raw dataset. In a sense, it is similar to the idea @ClimbsRocks discussed in #15. But instead of using only a gradient boosted model with the extracted features, we just let auto-sklearn and/or TPOT find the best combination of models.

What do you think about this idea? How much work would be necessary to allow DEvol to build autoencoder?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant