-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_dataset_statistics.py
36 lines (28 loc) · 1.19 KB
/
compute_dataset_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pandas as pd
import numpy as np
data = []
for dataset in ["atis", "banking77", "clinc", "hwu", "hwu_orig"]:
df = pd.read_csv(f"data/{dataset}.csv")
mean_utterance_length = np.mean(df.text.apply(lambda x: len(x)))
std_utterance_length = np.std(df.text.apply(lambda x: len(x)))
max_utterance_length = np.max(df.text.apply(lambda x: len(x)))
mean_utterance_length = f"{mean_utterance_length:.2f} ({std_utterance_length:.2f})"
num_samples = len(df)
num_intents = len(set(df.intent))
num_domains = len(set(df.domain))
row = [dataset, num_samples, num_domains, num_intents, max_utterance_length, mean_utterance_length]
data.append(row)
df=pd.DataFrame(data, columns=["Dataset", "# Samples", "# Domains", "# Intents", "Max Utterance Length", "Mean Utterance Length"])
datasets = {
"hwu": "HWU64-DG",
"clinc": "CLINC150",
"hwu_orig": "HWU64",
"atis": "ATIS",
"banking77": "Banking77",
"": ""
}
df.Dataset = df.Dataset.apply(lambda x: datasets[x])
for c in ["# Samples", "# Domains", "# Intents"]:
df[c] = df[c].apply(lambda x : f"{x:,}")
# df["Dataset Length"] = df["Dataset Length"].apply(lambda x : f"{x}")
print(df.to_latex(index=False))