-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconcat_feature.m
131 lines (103 loc) · 4.54 KB
/
concat_feature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
function [ F ] = concat_feature(X_pyramid, X_prime_pyramid, l, i, j, L)
%CONCAT_FEATURE Concatenate the neighborhood around (i,j)
% on levels l and l-1 for X and X'
% Use a neighborhood size of 5 for level l, and
% a size of 3 for level l-1.
global N_BIG;
global N_SMALL;
global NNF;
global nnf;
global NUM_FEATURES;
global G_big;
global G_small;
global end_idx;
X_fine = X_pyramid{l};
X_prime_fine = X_prime_pyramid{l};
[x_fine_height, x_fine_width, ~] = size(X_fine);
if l+1 <= L % In range, so make a coarse guy
X_coarse = X_pyramid{l+1};
X_prime_coarse = X_prime_pyramid{l+1};
[x_coarse_height, x_coarse_width, ~] = size(X_coarse);
end
X_fine_nhood = zeros(N_BIG);
X_prime_fine_nhood = zeros(N_BIG);
X_coarse_nhood = zeros(N_SMALL);
X_prime_coarse_nhood = zeros(N_SMALL);
[ x_fine_start_i, x_fine_end_i, x_fine_start_j, x_fine_end_j, ...
pad_top, pad_bot, pad_left, pad_right ] = ...
get_indices( i, j, N_BIG, x_fine_height, x_fine_width );
% A or B
X_fine_nhood(pad_top:pad_bot, pad_left:pad_right)...
= X_fine(x_fine_start_i : x_fine_end_i,...
x_fine_start_j : x_fine_end_j, NUM_FEATURES);
X_fine_nhood = X_fine_nhood.* G_big; % Gaussian kernel
% A' or B'
X_prime_fine_nhood(pad_top:pad_bot, pad_left:pad_right) ...
= X_prime_fine(x_fine_start_i : x_fine_end_i,...
x_fine_start_j : x_fine_end_j, NUM_FEATURES);
X_prime_fine_nhood = X_prime_fine_nhood.* G_big;
if l+1 <= L
[ x_coarse_start_i, x_coarse_end_i, x_coarse_start_j, x_coarse_end_j, ...
pad_top, pad_bot, pad_left, pad_right, flag] = ...
get_indices( floor(i/2), floor(j/2), N_SMALL, x_coarse_height, x_coarse_width );
if flag == false
X_coarse_nhood(pad_top:pad_bot, pad_left:pad_right)...
= X_coarse(x_coarse_start_i : x_coarse_end_i,...
x_coarse_start_j : x_coarse_end_j, NUM_FEATURES);
X_coarse_nhood = X_coarse_nhood.* G_small;
X_prime_coarse_nhood(pad_top:pad_bot, pad_left:pad_right) ...
= X_prime_coarse(x_coarse_start_i : x_coarse_end_i,...
x_coarse_start_j : x_coarse_end_j, NUM_FEATURES);
X_prime_coarse_nhood = X_prime_coarse_nhood.* G_small;
% imshow(X_prime_coarse_nhood, 'InitialMagnification', 'fit');
% Normalize
% X_coarse_nhood = X_coarse_nhood * (1/2);
% X_prime_coarse_nhood = X_prime_coarse_nhood * (1/2);
% X_coarse_nhood = X_coarse_nhood .* (sum(X_fine_nhood(:).^2) / sum(X_coarse_nhood(:).^2));
% X_prime_coarse_nhood = X_prime_coarse_nhood .* (sum(X_prime_fine_nhood(:).^2) / sum(X_prime_coarse_nhood(:).^2));
% X_coarse_nhood = X_coarse_nhood .* (sum(X_fine_nhood(:).^2) / sum(X_coarse_nhood(:)));
% X_prime_coarse_nhood = X_prime_coarse_nhood .* (sum(X_prime_fine_nhood(:).^2) / sum(X_prime_coarse_nhood(:)));
% X_fine = [X_fine_nhood; X_prime_fine_nhood];
% X_fine = (X_fine ./ sum(X_fine(:)));% * .5;
% X_fine_nhood = X_fine(1:size(X_fine_nhood, 1), :);
% X_prime_fine_nhood = X_fine(size(X_fine_nhood, 1)+1:end, :);
%
% % sum(X_fine_nhood(:)) + sum(X_prime_fine_nhood(:))
% X_coarse = [X_coarse_nhood; X_prime_coarse_nhood];
% X_coarse = (X_coarse ./ sum(X_coarse(:)));% * .5;
% X_coarse_nhood = X_coarse(1:size(X_coarse_nhood, 1), :);
% X_prime_coarse_nhood = X_coarse(size(X_coarse_nhood, 1)+1:end, :);
% sum(X_coarse_nhood(:)) + sum(X_prime_coarse_nhood(:))
end
end
% X_fine_nhood = X_fine_nhood / sum(X_fine_nhood);
% X_prime_fine_nhood = X_prime_fine_nhood / sum(X_prime_fine_nhood);
% X_coarse_nhood = X_coarse_nhood / sum(X_coarse_nhood);
% X_prime_coarse_nhood = X_prime_coarse_nhood / sum(X_prime_coarse_nhood);
F = zeros(1, NNF*2 + nnf*2);
% Begin filling in the concatenated feature vectors into F
% Note that (i,j) are in terms of extended images
% This is neighborhood of A{l} or B{l}
F(1:NNF) = reshape(X_fine_nhood, 1, NNF);
% Only copies over the parts of B' (and A') that are already made
temp = X_prime_fine_nhood'; % <-- transpose this??????
temp = reshape(temp, 1, NNF);
temp(end_idx+1:end) = 0;
% otherTemp = reshape(temp, 5, 5);
% imshow(otherTemp', 'InitialMagnification', 'fit');
F(NNF+1:2*NNF) = temp;
% Edge case: make sure the l-1 level exists
if l+1 <= L
F(2*NNF+1:2*NNF+nnf) = reshape(X_coarse_nhood, 1, nnf);
F(2*NNF+nnf+1:end) = reshape(X_prime_coarse_nhood, 1, nnf);
end
% [i j]
% subplot(1,2,1);
% imshow(reshape(F(1:NNF), N_BIG, N_BIG));
% subplot(1,2,2);
% x_fine_start_i
% x_fine_end_i
% x_fine_start_j
% x_fine_end_j
% imshow(X_fine(x_fine_start_i:x_fine_end_i, x_fine_start_j:x_fine_end_j));
end