forked from NOAA-PSL/stochastic_physics
-
Notifications
You must be signed in to change notification settings - Fork 3
/
cellular_automata_global.F90
315 lines (258 loc) · 9.95 KB
/
cellular_automata_global.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
module cellular_automata_global_mod
use update_ca, only : domain_global,iscnx_g,iecnx_g,jscnx_g,jecnx_g,isdnx_g,iednx_g,jsdnx_g,jednx_g, &
nxncells_g,nyncells_g,csum,cold_start_ca_global
implicit none
contains
subroutine cellular_automata_global(kstep,restart,first_time_step,ca1_cpl,ca2_cpl,ca3_cpl, &
domain_in,nblks,isc,iec,jsc,jec,npx,npy,nlev, &
nca,ncells,nlives,nfracseed,nseed,iseed_ca, mytile, &
ca_smooth,nspinup,blocksize,nsmooth,ca_amplitude,mpiroot,mpicomm)
use mpi_f08
use kinddef, only: kind_dbl_prec, kind_phys
use update_ca, only: update_cells_global,define_ca_domain
use halo_exchange, only: atmosphere_scalar_field_halo
use random_numbers, only: random_01_CB
use mpp_domains_mod, only: domain2D,mpp_get_global_domain,CENTER, mpp_get_data_domain, mpp_get_compute_domain,mpp_global_sum, &
BITWISE_EFP_SUM, BITWISE_EXACT_SUM,mpp_define_io_domain,mpp_get_io_domain_layout
use block_control_mod, only: block_control_type, define_blocks_packed
use mpi_wrapper, only: mp_reduce_sum,mp_reduce_max,mp_reduce_min, &
mpi_wrapper_initialize,mype,is_rootpe
implicit none
!L.Bengtsson, 2017-06
!P.Pegion, 2021-09
! swtich to new random number generator and improve computational efficiency
! and remove unsued code. Also add restart capability ca_global
!This program evolves a cellular automaton uniform over the globe
integer, intent(in) :: kstep,ncells,nca,nlives,nseed,nspinup,nsmooth,mpiroot
type(MPI_Comm), intent(in) :: mpicomm
integer(kind=kind_dbl_prec), intent(in) :: iseed_ca
integer, intent(in) :: mytile
real(kind=kind_phys), intent(in) :: nfracseed,ca_amplitude
logical, intent(in) :: ca_smooth,first_time_step, restart
integer, intent(in) :: nblks,isc,iec,jsc,jec,npx,npy,nlev,blocksize
real(kind=kind_phys), intent(out) :: ca1_cpl(:,:),ca2_cpl(:,:),ca3_cpl(:,:)
type(domain2D), intent(inout) :: domain_in
type(block_control_type) :: Atm_block
integer :: nlon, nlat, isize,jsize,nf,nn
integer :: inci, incj, nxc, nyc, nxch, nych
integer :: halo, k_in, i, j, k
integer :: seed, ierr7,blk, ix, iix, count4,ih,jh
integer :: blocksz,levs
integer,save :: isdnx,iednx,jsdnx,jednx
integer,save :: iscnx,iecnx,jscnx,jecnx
integer :: nxncells, nyncells
integer(8) :: count, count_rate, count_max, count_trunc,nx_full
integer(8) :: iscale = 10000000000
integer, allocatable :: iini_g(:,:,:),ilives_g(:,:)
integer, allocatable :: io_layout(:)
real(kind=kind_phys), allocatable :: field_out(:,:,:), field_smooth(:,:)
real(kind=kind_phys), allocatable :: CA(:,:),CA1(:,:),CA2(:,:),CA3(:,:),CAprime(:,:)
real*8 , allocatable :: noise(:,:,:)
real*8 :: psum,CAmean,sq_diff,CAstdv,inv9
real*8 :: Detmax,Detmin
logical,save :: block_message=.true.
integer*8 :: i1,j1
integer :: ct
!nca :: switch for number of cellular automata to be used.
!nfracseed :: switch for number of random cells initially seeded
!nlives :: switch for maximum number of lives a cell can have
!nspinup :: switch for number of itterations to spin up the ca
!ncells :: switch for higher resolution grid e.g ncells=4
! gives 4x4 times the FV3 model grid resolution.
!ca_smooth :: switch to smooth the cellular automata
if (nca .LT. 1) return
! Initialize MPI and OpenMP
if (first_time_step) then
call mpi_wrapper_initialize(mpiroot,mpicomm)
end if
halo=3
k_in=1
!----------------------------------------------------------------------------
! Get information about the compute domain, allocate fields on this
! domain
! WRITE(*,*)'Entering cellular automata calculations'
! Some security checks for namelist combinations:
if(nca > 3)then
write(0,*)'Namelist option nca cannot be larger than 3 - exiting'
stop
endif
nlon=iec-isc+1
nlat=jec-jsc+1
isize=nlon+2*halo
jsize=nlat+2*halo
inci=ncells
incj=ncells
!--- get params from domain_ncellx for building board and board_halo
!Get CA domain
if(first_time_step)then
if (.not. restart) then
allocate(io_layout(2))
io_layout=mpp_get_io_domain_layout(domain_in)
call define_ca_domain(domain_in,domain_global,halo,ncells,nxncells_g,nyncells_g)
call mpp_define_io_domain(domain_global, io_layout)
endif
call mpp_get_data_domain (domain_global,isdnx_g,iednx_g,jsdnx_g,jednx_g)
call mpp_get_compute_domain (domain_global,iscnx_g,iecnx_g,jscnx_g,jecnx_g)
endif
nxc = iecnx_g-iscnx_g+1
nyc = jecnx_g-jscnx_g+1
nxch = iednx_g-isdnx_g+1
nych = jednx_g-jsdnx_g+1
inv9=1.0/9.0
if(first_time_step) csum=int(6*(npx-1),kind=8)*int((npx-1),kind=8)
!Allocate fields:
allocate(field_out(isize,jsize,1))
allocate(field_smooth(nlon,nlat))
allocate(iini_g(nxc,nyc,nca))
allocate(ilives_g(nxc,nyc))
allocate(CA(nlon,nlat))
allocate(CAprime(nlon,nlat))
allocate(CA1(nlon,nlat))
allocate(CA2(nlon,nlat))
allocate(CA3(nlon,nlat))
allocate(noise(nxc,nyc,nca))
nx_full=int(npx-1,kind=8)
!Initialize:
noise(:,:,:) = 0.0
iini_g(:,:,:) = 0
ilives_g(:,:) = 0
CA1(:,:) = 0.0
CA2(:,:) = 0.0
CA3(:,:) = 0.0
!Put the blocks of model fields into a 2d array - can't use nlev and blocksize directly,
!because the arguments to define_blocks_packed are intent(inout) and not intent(in).
levs=nlev
blocksz=blocksize
call define_blocks_packed('cellular_automata', Atm_block, isc, iec, jsc, jec, levs, &
blocksz, block_message)
do j=1,nyc
j1=j+(jsc-1)*ncells
do i=1,nxc
i1=i+(isc-1)*ncells
if (iseed_ca <= 0) then
! generate a random seed from system clock and ens member number
call system_clock(count, count_rate, count_max)
! iseed is elapsed time since unix epoch began (secs)
! truncate to 4 byte integer
count_trunc = iscale*(count/iscale)
count4 = count - count_trunc + mytile *( i1+nx_full*(j1-1)) ! no need to multply by 7 since time will be different in sgs
else
! don't rely on compiler to truncate integer(8) to integer(4) on
! overflow, do wrap around explicitly.
count4 = mod(((iseed_ca+7)*mytile)*(i1+nx_full*(j1-1))+ 2147483648_8, 4294967296_8) - 2147483648_8
endif
ct=1
do nf=1,nca
noise(i,j,nf)=real(random_01_CB(ct*kstep,count4),kind=8)
ct=ct+1
enddo
enddo
enddo
!Initiate the cellular automaton with random numbers larger than nfracseed
do nf=1,nca
do j = 1,nyc
do i = 1,nxc
if (noise(i,j,nf) > nfracseed ) then
iini_g(i,j,nf)=1
else
iini_g(i,j,nf)=0
endif
enddo
enddo
enddo !nf
!In case we want to condition the cellular automaton on a large scale field
!we here set the "condition" variable to a different model field depending
!on nf. (this is not used if ca_global = .true.)
do nf=1,nca !update each ca
do j = 1,nyc
do i = 1,nxc
ilives_g(i,j)=int(real(nlives)*1.5*noise(i,j,nf))
enddo
enddo
!Calculate neighbours and update the automata
!If ca-global is used, then nca independent CAs are called and weighted together to create one field; CA
CA(:,:)=0.
call update_cells_global(kstep,halo,first_time_step,iseed_ca,restart,nca,nxc,nyc,nxch,nych,nlon,nlat,isc,iec,jsc,jec, &
npx,npy,CA,iini_g,ilives_g, &
nlives,ncells,nfracseed,nseed,nspinup,nf,mytile)
if (ca_smooth) then
field_out=0.
field_out(1+halo:nlon+halo,1+halo:nlat+halo,1) = real(CA(1:nlon,1:nlat),kind=8)
do nn=1,nsmooth !number of iterations for the smoothing.
call atmosphere_scalar_field_halo(field_out,halo,isize,jsize,k_in,isc,iec,jsc,jec,npx,npy,domain_global)
do j=1,nlat
do i=1,nlon
ih=i+halo
jh=j+halo
field_smooth(i,j)=(field_out(ih,jh,1)+field_out(ih-1,jh,1)+ &
field_out(ih,jh-1,1)+field_out(ih+1,jh,1)+&
field_out(ih,jh+1,1)+field_out(ih-1,jh-1,1)+&
field_out(ih-1,jh+1,1)+field_out(ih+1,jh+1,1)+&
field_out(ih+1,jh-1,1))*inv9
enddo
enddo
field_out(1+halo:nlon+halo,1+halo:nlat+halo,1) = field_smooth(1:nlon,1:nlat)
enddo !nn
do j=1,nlat
do i=1,nlon
CA(i,j)=field_smooth(i,j)
enddo
enddo
endif !smooth
!mean:
!psum=SUM(CA)
!call mp_reduce_sum(psum)
psum= mpp_global_sum (domain_global, CA, flags=BITWISE_EXACT_SUM)
CAmean=psum/csum
!std:
!sq_diff = 0.
do j=1,nlat
do i=1,nlon
CAprime(i,j) = (CA(i,j)-CAmean)**2.0
enddo
enddo
!call mp_reduce_sum(sq_diff)
sq_diff= mpp_global_sum (domain_global, CAprime, flags=BITWISE_EXACT_SUM)
CAstdv = sqrt(sq_diff/csum)
!Transform to mean of 1 and ca_amplitude standard deviation
do j=1,nlat
do i=1,nlon
CA(i,j)=1.0 + (CA(i,j)-CAmean)*(ca_amplitude/CAstdv)
enddo
enddo
do j=1,nlat
do i=1,nlon
CA(i,j)=min(max(CA(i,j),0.),2.0)
enddo
enddo
!Put back into blocks 1D array to be passed to physics
!or diagnostics output
if(nf==1)then
CA1(:,:)=CA(:,:)
elseif(nf==2)then
CA2(:,:)=CA(:,:)
else
CA3(:,:)=CA(:,:)
endif
enddo !nf
do blk = 1, Atm_block%nblks
do ix = 1,Atm_block%blksz(blk)
i = Atm_block%index(blk)%ii(ix) - isc + 1
j = Atm_block%index(blk)%jj(ix) - jsc + 1
ca1_cpl(blk,ix)=CA1(i,j)
ca2_cpl(blk,ix)=CA2(i,j)
ca3_cpl(blk,ix)=CA3(i,j)
enddo
enddo
deallocate(field_out)
deallocate(field_smooth)
deallocate(iini_g)
deallocate(ilives_g)
deallocate(CA)
deallocate(CAprime)
deallocate(CA1)
deallocate(CA2)
deallocate(CA3)
deallocate(noise)
end subroutine cellular_automata_global
end module cellular_automata_global_mod