-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCorrelationPlugin.py
172 lines (135 loc) · 6.6 KB
/
CorrelationPlugin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np
from phy import IPlugin, connect
from phy.cluster.views import ManualClusteringView # Base class for phy views
from phy.plot.plot import PlotCanvas
from phy.plot.visuals import PlotVisual, ScatterVisual
from phy.utils import emit, connect, unconnect, Bunch
import matplotlib.pyplot as plt
class CorrelationView(ManualClusteringView):
plot_canvas_class = PlotCanvas
def __init__(self, controller):
super(CorrelationView, self).__init__()
self.controller = controller
self.colormap = plt.colormaps['plasma'].colors
self.point_size = 50
self.data_bounds = None
self.cluster_ids = None
self.canvas.set_layout('stacked', n_plots=1)
self.visual = ScatterVisual()
self.canvas.add_visual(self.visual)
def on_select(self, cluster_ids):
pass
def get_correlation_matrix(self):
print('Computing correlation matrix...')
cluster_ids_all = self.controller.supervisor.clustering.cluster_ids
groups = [self.controller.supervisor.get_labels('group')[cluster_id] for cluster_id in cluster_ids_all]
idx = []
for k in range(len(groups)):
if groups[k] == 'good' or groups[k] == 'mua':
idx.append(k)
self.cluster_ids = cluster_ids_all[idx]
channels = [self.controller.get_best_channel(self.cluster_ids[k]) for k in range(len(self.cluster_ids))]
self.cluster_ids = self.cluster_ids[np.argsort(channels)]
spike_times = [np.array(self.controller.get_spike_times(cluster_id)) for cluster_id in self.cluster_ids] # in seconds
correlation_matrix = np.zeros((len(self.cluster_ids), len(self.cluster_ids)))
bin_width = 10 # ms
for k in range(len(self.cluster_ids)):
for j in range(k, len(self.cluster_ids)):
if j == k:
correlation_matrix[k,j]=1
continue
st1 = np.int64(spike_times[k]*1000/bin_width)
s1 = np.zeros(np.max(st1)+1)
s1[st1] = 1
st2 = np.int64(spike_times[j]*1000/bin_width)
s2 = np.zeros(np.max(st2)+1)
s2[st2] = 1
idx_end = np.min([len(s1), len(s2)])
idx_start = np.max([st1[0], st2[0]])
if idx_end<=idx_start:
correlation_matrix[k,j] = 0
correlation_matrix[j,k] = 0
continue
s1 = s1[idx_start:idx_end]
s2 = s2[idx_start:idx_end]
correlation_matrix[k,j] = np.corrcoef(s1,s2)[0,1]
correlation_matrix[j,k] = correlation_matrix[k,j]
print(k, 'out of', len(self.cluster_ids), 'clusters done.')
return correlation_matrix
def get_color(self, corr):
if np.isnan(corr):
idx = 0
else:
n_colors = len(self.colormap)
idx = np.int64(np.floor(corr*(n_colors-1)))
if idx<0:
idx = 0
elif idx >= n_colors:
idx = n_colors-1
color = np.concatenate((self.colormap[idx],np.array([1])))
return color
def refresh_matrix(self):
self.correlation_matrix = self.get_correlation_matrix()
self.point_size = 500/len(self.cluster_ids)
self.refresh_figure()
def refresh_figure(self):
self.visual.reset_batch()
x_plot = []
y_plot = []
c_plot = []
for k in range(np.size(self.correlation_matrix,0)):
for j in range(np.size(self.correlation_matrix,1)):
x_plot.append(k)
y_plot.append(j)
c_plot.append(self.get_color(self.correlation_matrix[k,j]))
x_plot = np.array(x_plot)
y_plot = np.array(y_plot)
c_plot = np.array(c_plot)
self.data_bounds = (0, 0, np.size(self.correlation_matrix,0), np.size(self.correlation_matrix,1))
self.visual.add_batch_data(
x=x_plot, y=y_plot, color=c_plot, size=self.point_size, data_bounds=self.data_bounds, box_index=0)
self.canvas.update_visual(self.visual)
self.canvas.update()
def on_mouse_click(self, e):
if self.cluster_ids is None or self.data_bounds is None:
return
if 'Control' in e.modifiers:
layout = getattr(self.canvas, 'layout', None)
box_size_x, box_size_y = layout.box_size
box, pos = layout.box_map(e.pos)
x = pos[0] * box_size_x * (self.data_bounds[2] - self.data_bounds[0]) / 2 + (
self.data_bounds[0] + self.data_bounds[2]) / 2
y = pos[1] * box_size_y * (self.data_bounds[3] - self.data_bounds[1]) / (1 + box_size_y) + (
self.data_bounds[3] - self.data_bounds[1]) / (1 + box_size_y) + self.data_bounds[1]
print('Clicking', x, y)
x = round(x)
y = round(y)
if x >= len(self.cluster_ids) or x < 0 or y >= len(self.cluster_ids) or y < 0:
return
print('id=='+str(self.cluster_ids[x])+' || id=='+str(self.cluster_ids[y]))
if x==y:
self.controller.supervisor.filter('id=='+str(self.cluster_ids[x]))
emit('select', self.controller.supervisor, [self.cluster_ids[x]])
else:
self.controller.supervisor.filter('id=='+str(self.cluster_ids[x])+' || id=='+str(self.cluster_ids[y]))
emit('select', self.controller.supervisor, [self.cluster_ids[x], self.cluster_ids[y]])
class CorrelationViewPlugin(IPlugin):
def attach_to_controller(self, controller):
def create_correlation_view():
"""A function that creates and returns a view."""
view = CorrelationView(controller)
@connect(sender=view)
def on_view_attached(view_, gui):
# NOTE: this callback function is called in CorrelationView.attach().
@view.actions.add(prompt=False)
def refresh_matrix():
"""Refresh the view."""
view.refresh_matrix()
@view.actions.add(prompt=True, prompt_default=lambda: str(view.point_size))
def change_point_size(point_size):
"""Change the point size displayed in the CorrelationView."""
view.point_size = point_size
view.refresh_figure()
view.actions.separator()
return view
controller.view_creator['CorrelationView'] = create_correlation_view